scholarly journals Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses

2021 ◽  
Vol 22 (16) ◽  
pp. 8568
Author(s):  
Yun Wang ◽  
Salma Mostafa ◽  
Wen Zeng ◽  
Biao Jin

As sessile organisms, plants must tolerate various environmental stresses. Plant hormones play vital roles in plant responses to biotic and abiotic stresses. Among these hormones, jasmonic acid (JA) and its precursors and derivatives (jasmonates, JAs) play important roles in the mediation of plant responses and defenses to biotic and abiotic stresses and have received extensive research attention. Although some reviews of JAs are available, this review focuses on JAs in the regulation of plant stress responses, as well as JA synthesis, metabolism, and signaling pathways. We summarize recent progress in clarifying the functions and mechanisms of JAs in plant responses to abiotic stresses (drought, cold, salt, heat, and heavy metal toxicity) and biotic stresses (pathogen, insect, and herbivore). Meanwhile, the crosstalk of JA with various other plant hormones regulates the balance between plant growth and defense. Therefore, we review the crosstalk of JAs with other phytohormones, including auxin, gibberellic acid, salicylic acid, brassinosteroid, ethylene, and abscisic acid. Finally, we discuss current issues and future opportunities in research into JAs in plant stress responses.

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3906 ◽  
Author(s):  
Michal Hála ◽  
Viktor Žárský

Protein prenylation is one of the most important posttranslational modifications of proteins. Prenylated proteins play important roles in different developmental processes as well as stress responses in plants as the addition of hydrophobic prenyl chains (mostly farnesyl or geranyl) allow otherwise hydrophilic proteins to operate as peripheral lipid membrane proteins. This review focuses on selected aspects connecting protein prenylation with plant responses to both abiotic and biotic stresses. It summarizes how changes in protein prenylation impact plant growth, deals with several families of proteins involved in stress response and highlights prominent regulatory importance of prenylated small GTPases and chaperons. Potential possibilities of these proteins to be applicable for biotechnologies are discussed.


Author(s):  
Marta-Marina Pérez-Alonso ◽  
Paloma Ortiz-García ◽  
José Moya-Cuevas ◽  
Thomas Lehmann ◽  
Beatriz Sánchez-Parra ◽  
...  

Abstract The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant’s stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2562
Author(s):  
Yan Zhang ◽  
Zhixiang Chen

Selective autophagy is a highly regulated degradation pathway for the removal of specific damaged or unwanted cellular components and organelles such as protein aggregates. Cargo selectivity in selective autophagy relies on the action of cargo receptors and adaptors. In mammalian cells, two structurally related proteins p62 and NBR1 act as cargo receptors for selective autophagy of ubiquitinated proteins including aggregation-prone proteins in aggrephagy. Plant NBR1 is the structural and functional homolog of mammalian p62 and NBR1. Since its first reports almost ten years ago, plant NBR1 has been well established to function as a cargo receptor for selective autophagy of stress-induced protein aggregates and play an important role in plant responses to a broad spectrum of stress conditions including heat, salt and drought. Over the past several years, important progress has been made in the discovery of specific cargo proteins of plant NBR1 and their roles in the regulation of plant heat stress memory, plant-viral interaction and special protein secretion. There is also new evidence for a possible role of NBR1 in stress-induced pexophagy, sulfur nutrient responses and abscisic acid signaling. In this review, we summarize these progresses and discuss the potential significance of NBR1-mediated selective autophagy in broad plant responses to both biotic and abiotic stresses.


2020 ◽  
Author(s):  
Marta-Marina Pérez-Alonso ◽  
Paloma Ortiz-García ◽  
José Moya-Cuevas ◽  
Thomas Lehmann ◽  
Beatriz Sánchez-Parra ◽  
...  

ABSTRACTThe evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid (JA), salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyze the physiological role of AMIDASE 1 (AMI1) in plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalyzing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plants’ stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including JA and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth, but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin with ABA homeostasis.HIGHLIGHTThe IAM amidohydrolase AMI1 catalyzes the conversion of IAM into IAA in vivo. Expression of AMI1 is specifically repressed by osmotic stress conditions, which triggers ABA biosynthesis through the induction of NCED3, thereby linking auxin homeostasis with plant stress responses.


2021 ◽  
Vol 22 (24) ◽  
pp. 13464
Author(s):  
Yun Song ◽  
Li Feng ◽  
Mohammed Abdul Muhsen Alyafei ◽  
Abdul Jaleel ◽  
Maozhi Ren

The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 119 ◽  
Author(s):  
Mengxue Wang ◽  
Xifeng Li ◽  
Shuwei Luo ◽  
Baofang Fan ◽  
Cheng Zhu ◽  
...  

In eukaryotic cells, autophagosomes and multivesicular bodies (MVBs) are two closely related partners in the lysosomal/vacuolar protein degradation system. Autophagosomes are double membrane-bound organelles that transport cytoplasmic components, including proteins and organelles for autophagic degradation in the lysosomes/vacuoles. MVBs are single-membrane organelles in the endocytic pathway that contain intraluminal vesicles whose content is either degraded in the lysosomes/vacuoles or recycled to the cell surface. In plants, both autophagosome and MVB pathways play important roles in plant responses to biotic and abiotic stresses. More recent studies have revealed that autophagosomes and MVBs also act together in plant stress responses in a variety of processes, including deployment of defense-related molecules, regulation of cell death, trafficking and degradation of membrane and soluble constituents, and modulation of plant hormone metabolism and signaling. In this review, we discuss these recent findings on the coordination and crosstalk between autophagosome and MVB pathways that contribute to the complex network of plant stress responses.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Wenyi Wu ◽  
Yan Wu ◽  
Dahui Hu ◽  
Yincong Zhou ◽  
Yanshi Hu ◽  
...  

Abstract Non-coding RNAs (ncRNAs) are recognized as key regulatory molecules in many biological processes. Accumulating evidence indicates that ncRNA-related mechanisms play important roles in plant stress responses. Although abundant plant stress-responsive ncRNAs have been identified, these experimentally validated results have not been gathered into a single public domain archive. Therefore, we established PncStress by curating experimentally validated stress-responsive ncRNAs in plants, including microRNAs, long non-coding RNAs and circular RNAs. The current version of PncStress contains 4227 entries from 114 plants covering 48 biotic and 91 abiotic stresses. For each entry, PncStress has biological information and network visualization. Serving as a manually curated database, PncStress will become a valuable resource in support of plant stress response research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Taiaba Afrin ◽  
Minye Seok ◽  
Brenna C. Terry ◽  
Karolina M. Pajerowska-Mukhtar

Abstract The environmental effects shape genetic changes in the individuals within plant populations, which in turn contribute to the enhanced genetic diversity of the population as a whole. Thus, individuals within the same species can acquire and accumulate genetic differences in their genomes depending on their local environment and evolutionary history. IRE1 is a universal endoplasmic reticulum (ER) stress sensor that activates an evolutionarily conserved signalling cascade in response to biotic and abiotic stresses. Here, we selected nine different Arabidopsis accessions along with the reference ecotype Columbia-0, based on their geographical origins and differential endogenous IRE1 expression under steady-state conditions to investigate the natural variation of ER stress responses. We cloned and analysed selected upstream regulatory regions of IRE1a and IRE1b, which revealed differential levels of their inducibility. We also subjected these accessions to an array of biotic and abiotic stresses including heat, ER stress-inducing chemical tunicamycin, phytohormone salicylic acid, and pathogen infection. We measured IRE1-mediated splicing of its evolutionarily conserved downstream client as well as transcript accumulation of ER-resident chaperones and co-chaperones. Collectively, our results illustrate the expression polymorphism of a major plant stress receptor and its relationship with molecular and physiological ER stress sensitivity.


2018 ◽  
Vol 10 (3) ◽  
pp. 333-339
Author(s):  
Amir G. SHAHRIARI ◽  
Aminallah TAHMASEBI ◽  
Sima SAZEGARI

Salicylic acid (SA) and jasmonic acid (JA) phytohormones have been known for their roles in plant defense behaviour against biotic and abiotic stresses. They regulate defense pathways by antagonistic interaction. NPR1 as a key regulatory factor in the cross-talk between SA and JA, signaling is essential for the inhibition of JA-responsive gene expression by SA. In silico promoter analysis of 1.5 kb promoter regions of NPR1 gene revealed that NPR1 contains 23 MYB and 20 WRKY transcription factor binding sites. Different cis-elements associated with various stress responses were identified in Arabidopsis thaliana NPR1. The most common element was allocated to the defense responses against biotic stresses. Based on gene network analysis, NPR1, TGA2 and TGA3 were predicted to have functional cooperation with each other. Affymetrix microarray data analysis of A. thaliana under SA treatment demonstrated that most genes involved in NPR1 network are up-regulated under SA treatment. Therefore, interaction and cooperation between these factors might serve to fine-tune regulation of defense and immune responses against biotic and abiotic stresses.  


Sign in / Sign up

Export Citation Format

Share Document