scholarly journals Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice

2021 ◽  
Vol 22 (16) ◽  
pp. 8597
Author(s):  
Ilka Wilhelmi ◽  
Alexander Neumann ◽  
Markus Jähnert ◽  
Meriem Ouni ◽  
Annette Schürmann

Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.

2021 ◽  
pp. 1-6
Author(s):  
Miriam C. Aziz ◽  
Patricia N. Schneider ◽  
Gemma L. Carvill

Developmental and epileptic encephalopathies (DEEs) describe a subset of neurodevelopmental disorders categorized by refractory epilepsy that is often associated with intellectual disability and autism spectrum disorder. The majority of DEEs are now known to have a genetic basis with de novo coding variants accounting for the majority of cases. More recently, a small number of individuals have been identified with intronic <i>SCN1A</i> variants that result in alternative splicing events that lead to ectopic inclusion of poison exons (PEs). PEs are short highly conserved exons that contain a premature truncation codon, and when spliced into the transcript, lead to premature truncation and subsequent degradation by nonsense-mediated decay. The reason for the inclusion/exclusion of these PEs is not entirely clear, but research suggests an autoregulatory role in gene expression and protein abundance. This is seen in proteins such as RNA-binding proteins and serine/arginine-rich proteins. Recent studies have focused on targeting these PEs as a method for therapeutic intervention. Targeting PEs using antisense oligonucleotides (ASOs) has shown to be effective in modulating alternative splicing events by decreasing the amount of transcripts harboring PEs, thus increasing the abundance of full-length transcripts and thereby the amount of protein in haploinsufficient genes implicated in DEE. In the age of personalized medicine, cellular and animal models of the genetic epilepsies have become essential in developing and testing novel precision therapeutics, including PE-targeting ASOs in a subset of DEEs.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Hussein A Abbas ◽  
Feng Wang ◽  
Yue Wei ◽  
Hui Yang ◽  
Guillermo Montalban Bravo ◽  
...  

Background: Aberrant mRNA splicing occurs in myeloid malignancies and affects genes involved in tumor suppression, heme biosynthesis and mitochondrial iron metabolism. Functional studies demonstrated impaired cellular differentiation upon targeting of aberrant splice variants. Hypomethylating agents (HMA) constitute the backbone of therapy of myeloid malignancies. Whether HMA treatment in myeloid malignancies alters the novel splicing transcriptional landscape and whether it correlates with responses remain largely unexplored. Methods: Total RNA sequencing was done on CD34+ cells from 79 patients bone marrow samples involved by acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), TF1 cell lines and CD34+ murine bone marrow cells. Novel alternatively spliced transcripts were detected using SplAdder and included the following splicing events: alterative 3' splice junction, alternative 5' splice junction, exon skipping, intron retention, multiple exon skipping and mutually exclusive exons. All alternatively splicing events were normalized to total transcript count in order to correct for total transcript levels. A false discovery rate of &lt;0.1 was used to identify significant events. Results: A total of 79 myeloid disease patients (27.8% females, 72.1% males) with a median age of 70 years (range, 31-87 years) were included in this study. In aggregate analysis of all 79 myeloid malignancies (39.2% (n=31) pre-treatment and 60.8% (n=48) post-treatment), there were 160 versus 37 (4.3 folds), 112 versus 40 (2.8 folds), 292 versus 51 (5.7 folds), 172 versus 80 (2.1 folds) and 29 versus 9 (3.2 folds) and 2 versus 0 novel splicing events occurring in pre- versus post- HMA treatment, respectively, in alterative 3' splice junction, alternative 5' splice junction, exon skipping, intron retention, multiple exon skipping and mutually exclusive exons, respectively. This suggested that treatment with HMA led to downregulation of novel alternative splicing events after normalization to total transcripts. However, upon excluding AML patients from the analysis, there were no significant events associated with treatment suggesting that the findings could be due to random events. To further explore whether HMA therapy influenced novel splicing events, we examined the novel splicing pattern in 7 MDS patients with paired BM samples at pre- and post-HMA and found no significant differences in alternative splicing events before and after the treatment. We then examined TF1 (human erythroleukemia) cell lines at pre- and post- HMA time points, but did not identify notable differences in the novel alternative splicing events with respect to HMA treatment. To assess whether CD34+ bone marrow cells from mice treated with hypomethylating agents have differential novel alternatively spliced events, we conducted similar analysis and did not find any discernible differences pre- and post- HMA treatment. These findings suggest that HMA does not influence novel alternative splicing events. Conclusions: Aberrant splicing has been linked to myeloid neoplasms especially myelodysplastic syndrome with mutations in splice variant genes. Our findings suggest that HMA does not influence novel alternative splicing events in myeloid malignancies. Therefore, the alternative splicing in myeloid disease is inherent to the disease and not affected by treatment. Disclosures Garcia-Manero: H3 Biomedicine: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Merck: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Onconova: Research Funding; Acceleron Pharmaceuticals: Consultancy, Honoraria; Amphivena Therapeutics: Research Funding; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Helsinn Therapeutics: Consultancy, Honoraria, Research Funding; Jazz Pharmaceuticals: Consultancy; Astex Pharmaceuticals: Consultancy, Honoraria, Research Funding; AbbVie: Honoraria, Research Funding.


2016 ◽  
Vol 23 (5) ◽  
pp. 466-477 ◽  
Author(s):  
Enrique Lara-Pezzi ◽  
Manuel Desco ◽  
Alberto Gatto ◽  
María Victoria Gómez-Gaviro

The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Anne-Laure Bougé ◽  
Eva Murauer ◽  
Emmanuelle Beyne ◽  
Julie Miro ◽  
Jessica Varilh ◽  
...  

Abstract We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology. A high and uniform coverage of the cDNA sequence was obtained that allowed to draw up a reliable inventory of the physiological alternative splicing events in the muscular DMD transcript. In contrast to previous assumptions, we evidenced that most of the 79 DMD exons are constitutively spliced in skeletal muscle. Only a limited number of 12 alternative splicing events were identified, all present at a very low level. These include previously known exon skipping events but also newly described pseudoexon inclusions and alternative 3′ splice sites, of which one is the first functional NAGNAG splice site reported in the DMD gene. This study provides the first RNA-Seq-based reference of DMD splicing pattern in skeletal muscle and reports on an experimental procedure well suited to detect condition-specific differences in this low abundance transcript that may prove useful for diagnostic, research or RNA-based therapeutic applications.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 638-638 ◽  
Author(s):  
Naim Rashid ◽  
Stephane Minvielle ◽  
Florence Magrangeas ◽  
Mehmet Kemal Samur ◽  
Alice Clynen ◽  
...  

Abstract Alternative splicing is an important post-translational change that alters gene function. Misregulation of alternative splicing has been implicated in number of disease processes including cancer. Here we have analyzed alternative splicing in myeloma using high throughput RNA-seq. Our analytic pipeline for RNA-seq data used in this investigation not only provides information on expression levels for genes, but also provides information on the expression of known splice variants of genes (isoforms), and can identify novel exon level events across individuals (i.e. exon skipping events). We conducted a study of 328 newly-diagnosed patients with multiple myeloma treated homogeneously with novel agent combination containting lenalidomide, bortezomib and dexamethsone with or without high-dose melphalan followed by lenalidomide maintenance in the IFM/DFCI study. RNA isolated from purified CD138+ MM cells collected at the time of diagnosis and from 18 normal donor plasma cells were processed by RNA-seq (100 million paired end reads on Illumina HiSeq) and analyzed using a custom computational and statistical pipeline. Following read alignment to hg19, we utilized RSEM to quantify both gene-level and isoform-level expression of known ENSEMBL transcripts. We then implemented a novel testing approach based on compositional regression to discover genes that show significant isoform switching between the 328 MM samples and 18 Normal Plasma Cell (NPC) samples from healthy donors. Using various programs and their modifications, we also identified novel alternative splicing events, such as exon skipping and mutually exclusive exon usage, among others. Patient data for MM characteristics, cytogenetic and FISH as well as clinical survival outcomes were also analyzed and correlated with genomic data. We observed over 600 genes showing significant changes in relative isoform abundances (isoform switching) between MM and normal samples. A number of previously characterized genes including MYCL1 (adj. p = 0.0014) and CCND3 (adj. p = 0.0013), and MAP kinase-related genes (MAP3K8, MAPKAPK2, MAPKAPK3, MAP4K4) exhibited significant isoform switching compared to normal, in addition to some not well characterized genes. Genes showing the greatest magnitude of isoform switching include MEFV (adj. p = 2.7 x 10-5), showing a two fold change in the relative major isoform abundance compared to normal, and has been previously shown to have a role in lymphoid neoplasms. We applied hierarchical clustering to the isoforms showing significant changes in isoform-switching and identified 4 distinct clusters, which are currently being investigated for correlation with clinical subtypes of MM. Exon level analyses of alternative splicing events, such as exon skipping, are currently underway. Clinical data including MM characteristics, cytogenetics, FISH and survival outcomes was available for a subset of 265 patients. We found that 109 genes showed significant isoform switching between t(4;14) and non-t(4;14) patients, such as CD44 (adj. p =1.8 x 10-6) and WHSC1 (adj. p =5.1 x 10-28). Comparing del17p (28 in total) and non del17p patients, we found no significant splicing changes after multiple testing adjustment. Of these genes, only a subset (40%) were shown to be differentially expressed in terms of total gene expression, suggesting the importance of examining alternative splicing events in addition to total gene expression. With respect to treatment response, we compared the expression of gene isoforms between patients achieving complete response (CR) versus others and identified 38 isoforms associated with response to treatment (adj. p value < 0.05), with SEPT9, SLC2A5, and UBX6 having the strongest associations (adj. p-value < 3 x 10-4). Using a univariate cox regression model, 4 spliced isoforms relating to 3 genes were identified as having significant correlation with event-free survival (EFS) (FDR-adjusted cox p value < 0.05). We are in the process of now integrating the gene expression data with altered splicing data to develop an integrated survival model. In summary, this study highlights the significant frequency, biological and clinical importance of alternative splicing in MM and points to the need for evaluation of not only the expression level of genes but also post-translational modifications. The genes identified here are important targets for therapy as well as possible immune modulation. Disclosures Moreau: Celgene Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Author(s):  
Melissa N. Hinman ◽  
Jared I. Richardson ◽  
Rose A. Sockol ◽  
Eliza D Aronson ◽  
Sarah J. Stednitz ◽  
...  

AbstractThe muscleblind RNA binding proteins (MBNL1, MBNL2, and MBNL3) are highly conserved across vertebrates and are important regulators of RNA alternative splicing. Loss of MBNL protein function through sequestration by CUG or CCUG RNA repeats is largely responsible for the phenotypes of the human genetic disorder myotonic dystrophy (DM). We generated the first stable zebrafish (Danio rerio) models of DM-associated MBNL loss of function through mutation of the three zebrafish mbnl genes. In contrast to mouse models, zebrafish double and triple homozygous mbnl mutants were viable to adulthood. Zebrafish mbnl mutants displayed disease-relevant physical phenotypes including decreased body size and impaired movement. They also exhibited widespread alternative splicing changes, including the misregulation of many DM-relevant exons. Physical and molecular phenotypes were more severe in compound mbnl mutants than in single mbnl mutants, suggesting partially redundant functions of Mbnl proteins. The high fecundity and larval optical transparency of this complete series of zebrafish mbnl mutants will make them useful for studying DM-related phenotypes and how individual Mbnl proteins contribute to them, and for testing potential therapeutics.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3413-3413 ◽  
Author(s):  
Harold Pimentel ◽  
Marilyn Parra ◽  
Jie Li ◽  
Sherry Gee ◽  
Dana Ghanem ◽  
...  

Abstract Spatio-temporal regulation of switches in alternative pre-mRNA splicing modulate exon usage, critically remodeling the transcriptome during development and differentiation of many tissues, while aberrant regulation of alternative splicing disrupts these processes and plays a role in numerous human diseases. Recently, the discovery of splicing factor mutations in myelodysplasia has increased interest in splicing regulation in hematology. Previously, a functionally critical erythroid splicing switch in protein 4.1 pre-mRNA has been reported, in which activation of alternative exon 16 splicing in late erythroblasts is required for assembly of a mechanically stable red cell membrane. To explore globally the landscape of important alternative splicing events in the erythroid lineage, we applied RNA-seq analysis to five highly FACS-purified populations of human erythroblasts, cultured from CD34+ cord blood progenitors, representing proerythroblasts, early and late basophilic erythroblasts, polychromatophilic erythroblasts, and orthochromatophilic erythroblasts. Alternative splicing events predicted by computational analysis were filtered to remove low expression genes and low frequency splicing events, to derive a list of >3000 ‘major’ alternative splicing events of potential importance in erythroid biology. Many of these were validated by inspection of RNA-seq reads mapped on the human genome, and/or by RT-PCR analysis. In this unique differentiation system we found an extensive and dynamic alternative splicing program enriched in genes that function in cell cycle regulation, organelle organization, chromatin structure and function, and RNA processing. For example, we identified alternative splicing events in ∼25 genes encoding chromatin modifying enzymes that methylate, demethylate, or acetylate specific lysine or arginine residues in histones; in transcription modulators such as ATRX and BCL11A that regulate normal globin gene expression; and in ∼50 RNA binding proteins with various roles in post-transcriptional gene regulation. Comparison of PSI (percent spliced in) values across the differentiation series revealed that dozens of alternative exons exhibit substantial switches in splicing efficiency during terminal erythropoiesis. The majority of splicing switches occur in late-stage polychromatophilic and orthochromatophilic erythroblasts, temporally correlated with changes in transcript abundance for many splicing factors and with substantial cell remodeling prior to enucleation. One of the biggest switches in late erythroblasts involves inclusion of a 35nt exon in the NDEL1 (nuclear distribution factor E-homolog-like1) gene, which alters C-terminal structure of a protein that functions in nuclear migration and nucleokinesis in nonerythroid cells and may have a role in erythroblast enucleation. Most of the regulated splicing events insert or delete sequences predicted to modulate protein structure and function in late erythroblasts. However, a subset of altered splicing events have a different effect on gene expression by introducing premature translation termination codons (PTCs), leading us to hypothesize that alternative splicing-coupled nonsense-mediated-decay (AS-NMD) contributes to stage-specific down-regulation of numerous erythroid transcripts. Consistent with such a model, most genes that up-regulate PTC exons in late erythroblasts exhibit reduction in overall expression levels, and inhibition of NMD increases the apparent expression of PTC isoforms. In contrast, genes that up-regulate coding exons are not preferentially down-regulated in late erythroblasts. We conclude that a dynamically regulated alternative splicing program in terminally differentiating erythroblasts plays a major post-transcriptional role in shaping gene expression as the cells transition from proliferation to differentiation, ensuring synthesis of the appropriate constellation of proteins as the cells prepare for enucleation and production of mature red cells. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 193 (3) ◽  
pp. 509-520 ◽  
Author(s):  
Jung-Chun Lin ◽  
Woan-Yuh Tarn

Alternative splicing contributes largely to cell differentiation and functional specification. We previously reported that the RNA-binding protein RBM4 antagonizes the activity of splicing factor PTB to modulate muscle cell–specific exon selection of α-tropomyosin. Here we show that down-regulation of PTB and its neuronal analogue nPTB during muscle cell differentiation may involve alternative splicing-coupled nonsense-mediated mRNA decay. RBM4 regulates PTB/nPTB expression by activating exon skipping of their transcripts during myogenesis. Moreover, RBM4 and PTB target a common set of transcripts that undergo muscle cell–specific alternative splicing. Overexpression of RBM4 invariably promoted expression of muscle cell–specific isoforms, which recapitulated in vivo alternative splicing changes during muscle differentiation, whereas PTB acted oppositely to RBM4 in expression of mRNA isoforms specific for late-stage differentiation. Therefore, RBM4 may synergize its effect on muscle cell–specific alternative splicing by down-regulating PTB expression and antagonizing the activity of PTB in exon selection, which highlights a hierarchical role for RBM4 in a splicing cascade that regulates myogenesis.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yuhki Saito ◽  
Soledad Miranda-Rottmann ◽  
Matteo Ruggiu ◽  
Christopher Y Park ◽  
John J Fak ◽  
...  

The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.


Author(s):  
Melissa N. Hinman ◽  
Jared I. Richardson ◽  
Rose A. Sockol ◽  
Eliza D Aronson ◽  
Sarah J. Stednitz ◽  
...  

The muscleblind RNA binding proteins (MBNL1, MBNL2, and MBNL3) are highly conserved across vertebrates and are important regulators of RNA alternative splicing. Loss of MBNL protein function through sequestration by CUG or CCUG RNA repeats is largely responsible for the phenotypes of the human genetic disorder myotonic dystrophy (DM). We generated the first stable zebrafish (Danio rerio) models of DM-associated MBNL loss of function through mutation of the three zebrafish mbnl genes. In contrast to mouse models, zebrafish double and triple homozygous mbnl mutants were viable to adulthood. Zebrafish mbnl mutants displayed disease-relevant physical phenotypes including decreased body size and impaired movement. They also exhibited widespread alternative splicing changes, including the misregulation of many DM-relevant exons. Physical and molecular phenotypes were more severe in compound mbnl mutants than in single mbnl mutants, suggesting partially redundant functions of Mbnl proteins. The high fecundity and larval optical transparency of this complete series of zebrafish mbnl mutants will make them useful for studying DM-related phenotypes and how individual Mbnl proteins contribute to them, and for testing potential therapeutics.


Sign in / Sign up

Export Citation Format

Share Document