scholarly journals Alveolar Regeneration in COVID-19 Patients: A Network Perspective

2021 ◽  
Vol 22 (20) ◽  
pp. 11279
Author(s):  
Shishir K. Gupta ◽  
Mugdha Srivastava ◽  
Rashmi Minocha ◽  
Aman Akash ◽  
Seema Dangwal ◽  
...  

A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.

Gut ◽  
2019 ◽  
Vol 68 (6) ◽  
pp. 1108-1114 ◽  
Author(s):  
Maria Gloria Dominguez-Bello ◽  
Filipa Godoy-Vitorino ◽  
Rob Knight ◽  
Martin J Blaser

The host-microbiome supraorganism appears to have coevolved and the unperturbed microbial component of the dyad renders host health sustainable. This coevolution has likely shaped evolving phenotypes in all life forms on this predominantly microbial planet. The microbiota seems to exert effects on the next generation from gestation, via maternal microbiota and immune responses. The microbiota ecosystems develop, restricted to their epithelial niches by the host immune system, concomitantly with the host chronological development, providing early modulation of physiological host development and functions for nutrition, immunity and resistance to pathogens at all ages. Here, we review the role of the microbiome in human development, including evolutionary considerations, and the maternal/fetal relationships, contributions to nutrition and growth. We also discuss what constitutes a healthy microbiota, how antimicrobial modern practices are impacting the human microbiota, the associations between microbiota perturbations, host responses and diseases rocketing in urban societies and potential for future restoration.


2021 ◽  
Vol 218 (11) ◽  
Author(s):  
Eva-Maria Frickel ◽  
Christopher A. Hunter

The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.


Background: The disease (COVID-2019) caused by (SARS-CoV-2) spread around the world. The new virus is a member of the Coronaviridae family and has been detected in various birds and mammals. The Spectrum of SARS-CoV-2 disease varies from asymptomatic infection to severe and often fatal disease. Immune responses against this SARS-CoV-2 are initiated by the innate immune system by the production of proinflammatory cytokines and chemokines. After that acquired immune responses begin, including cellular and hemoral immunity, are activated. The persistence of the antibody response to SARS-CoV-2 has not been determined precisely. There is a strong correlation between the neutralization antibody titer and the number of virus-specific T cells. The findings also show that both B and T cells participate in Immunological protection against viral infection. Understanding the behavior of SARS-CoV-2 in human host cells and its effect on the immune system can help to better understand the nature and pathogenesis of the virus. Furthermore, understanding the complexity of the function of immune system against the virus is necessary to developing new treatment protocols. However, there is a lot of controversy about the immune responses to this viral infection and its challenges, because the immune response against the SARS-CoV-2 virus is different from other coronavirus infections in many ways. According to the importance of this issue in this paper, while mentioning the structural features, virology of SARS-CoV-2 and its pathogenesis, immunological responses to this virus and the challenges are reviewed. For this purpose, review and original articles were collected from PubMed, Scopus, Google Scholar, and other reputable databases by using keywords such as COVID-19, Coronavirus, SARS-CoV-2, Pathogenesis, clinical features, Immune system, Antibody responses, B cell, T cell.


2014 ◽  
Vol 155 (26) ◽  
pp. 1019-1023
Author(s):  
Judit Gervain

The successful therapy of hepatitis C viral infection requires that the illness is diagnosed before the development of structural changes of the liver. Testing is stepwise consisting of screening, diagnosis, and anti-viral therapy follow-up. For these steps there are different biochemical, serological, histological and molecular biological methods available. For screening, alanine aminotransferase and anti-HCV tests are used. The diagnosis of infection is confirmed using real-time polymerase chain reaction of the viral nucleic acid. Before initiation of the therapy liver biopsy is recommended to determine the level of structural changes in the liver. Alternatively, transient elastography or blood biomarkers may be also used for this purpose. Differential diagnosis should exclude the co-existence of other viral infections and chronic hepatitis due to other origin, with special attention to the presence of autoantibodies. The outcome of the antiviral therapy and the length of treatment are mainly determined by the viral genotype. In Hungary, most patients are infected with genotype 1, subtype b. The polymorphism type that occurs in the single nucleotide located next to the interleukin 28B region in chromosome 19 and the viral polymorphism type Q80K for infection with HCV 1a serve as predictive therapeutic markers. The follow-up of therapy is based on the quantitative determination of viral nucleic acid according to national and international protocols and should use the same method and laboratory throughout the treatment of an individual patient. Orv. Hetil., 2014, 155(26), 1019–1023.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 259-261
Author(s):  
Aamir Khan ◽  
Rajni K. Gurmule

Vasavaleha is one of the best medicine given for respiratory diseases. Corona viruses typically affect the respiratory system, causing symptoms such as coughing, fever and shortness of breath. It also affects host immune system of human body. Spreading rate of this disease is very high. Whole world is seeking for the treatment which can uproots this diseases. There in no vaccine available till date against this pandemic disease. Ayurveda mainly focuses on prevention of diseases alongwith its total cure. Rajyakshma Vyadhi is MadhyamMarga Roga as per Ayurveda. It shows many symptoms such as Kasa, Shwasa etc. By overall view of Covid 19, shows its resemblance with Rajyakshma Vyadhi described in Ayurveda. Vasavaleha is a Kalpa which is described in Rogadhikara of Rajyakshma. It shows Kasahara, Shwashara properties. It consists of Vasa, Pipalli, Madhu and Goghrita. These components shows actions like bronchodilation, antitussive effect and many more other actions. Pipalli shows important Rasayana effect. So in present review, we have tried to focus on role of Vasavaleha in the management of Covid 19. This can be used as preventive as well as adjuvant medication in treating Covid 19. There is need of further clinical research to rule of exact action of Vasavaleha against Covid 19.


Sign in / Sign up

Export Citation Format

Share Document