scholarly journals Ets1 Promotes the Differentiation of Post-Selected iNKT Cells through Regulation of the Expression of Vα14Jα18 T Cell Receptor and PLZF

2021 ◽  
Vol 22 (22) ◽  
pp. 12199
Author(s):  
Ya-Ting Chuang ◽  
Wan-Chu Chuang ◽  
Chih-Chun Liu ◽  
Chia-Wei Liu ◽  
Yu-Wen Huang ◽  
...  

The transcription factor Ets1 is essential for the development/differentiation of invariant Natural Killer T (iNKT) cells at multiple stages. However, its mechanisms of action and target genes in iNKT cells are still elusive. Here, we show that Ets1 is required for the optimal expression of the Vα14Jα18 T cell receptor (TCR) in post-selected thymic iNKT cells and their immediate differentiation. Ets1 is also critical for maintaining the peripheral homeostasis of iNKT cells, which is a role independent of the expression of the Vα14Jα18 TCR. Genome-wide transcriptomic analyses of post-selected iNKT cells further reveal that Ets1 controls leukocytes activation, proliferation differentiation, and leukocyte-mediated immunity. In addition, Ets1 regulates the expression of ICOS and PLZF in iNKT cells. More importantly, restoring the expression of PLZF and the Vα14Jα18 TCR partially rescues the differentiation of iNKT cells in the absence of Ets1. Taken together, our results establish a detailed molecular picture of how Ets1 regulates the stepwise differentiation of iNKT cells.

2014 ◽  
Vol 12 (17) ◽  
pp. 2729-2736 ◽  
Author(s):  
Janice M. H. Cheng ◽  
Emma M. Dangerfield ◽  
Mattie S. M. Timmer ◽  
Bridget L. Stocker

Isoglobotrihexosylceramide (iGb3, 1) is an immunomodulatory glycolipid that binds to CD1d and is presented to the T-cell receptor (TCR) of invariant natural killer T (iNKT) cells.


2020 ◽  
Vol 38 (10) ◽  
pp. 1194-1202 ◽  
Author(s):  
Huang Huang ◽  
Chunlin Wang ◽  
Florian Rubelt ◽  
Thomas J. Scriba ◽  
Mark M. Davis

2005 ◽  
Vol 6 (8) ◽  
pp. 810-818 ◽  
Author(s):  
Dirk M Zajonc ◽  
Carlos Cantu ◽  
Jochen Mattner ◽  
Dapeng Zhou ◽  
Paul B Savage ◽  
...  

1995 ◽  
Vol 15 (10) ◽  
pp. 5576-5585 ◽  
Author(s):  
R P Bissonnette ◽  
T Brunner ◽  
S B Lazarchik ◽  
N J Yoo ◽  
M F Boehm ◽  
...  

T-cell hybridomas, thymocytes, and T cells can be induced to undergo apoptotic cell death by activation through the T-cell receptor. This process requires macromolecular synthesis and thus gene expression, and it has been shown to be influenced by factors regulating transcription. Recently, activation, T-cell hybridomas rapidly express the Fas/CD95 receptor and its ligand, Fas ligand (FasL), which interact to transduce the death signal in the activated cell. Retinoids, the active metabolites of vitamin A, modulate expression of specific target genes by binding to two classes of intracellular receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). They are potent modulators of apoptosis in a number of experimental models, and they have been shown to inhibit activation-induced apoptosis in T-cell hybridomas and thymocytes. Particularly effective is the prototypic pan-agonist 9-cis retinoic acid (9-cis RA), which has high affinity for both RARs and RXRs. We report here that 9-cis RA inhibits T-cell receptor-mediated apoptosis in T-cell hybridomas by blocking the expression of Fas ligand following activation. This inhibition appears to be at the level of FasL mRNA, with the subsequent failure to express cell surface FasL. RAR-selective (TTNPB) or RXR-selective (LG100268) ligands alone were considerably less potent than RAR-RXR pan-agonists. However, the addition of both RAR- and RXR-selective ligands was as effective as the addition of 9-cis RA alone. The demonstrates that the inhibitory effect requires the ligand-mediated activation of both retinoid receptor signaling pathways.


2021 ◽  
Author(s):  
Seyed Iraj Sadraei ◽  
Greg Yousif ◽  
S. Maryamdokht Taimoory ◽  
Emmanuel Igbokwe ◽  
Samaneh Mehri ◽  
...  

<p>Invariant natural killer T cells (iNKT), a subclass of white blood cells, are responsible for the production of pro-inflammatory cytokines which induce a systemic immune response. They are distinctive in having an invariant T-cell receptor that recognizes glycolipid antigens presented by the class I major histocompatibility complex-related protein CD1d, which is conserved across multiple mammalian species in a class of proteins well-renowned for their high degree of polymorphism. This receptor’s first identified antigen is the potent KRN7000, a glycosphingolipid isolated from bacteria that were found on a Japanese marine sponge. The corresponding terrestrial antigen remained unidentified until quite recently, when diacylglycerol-containing glycolipids, reported to activate iNKT cells, were isolated from <i>Streptococcus pneumoniae</i>. We report the total synthesis and immunological re-evaluation of these two glycolipids. The compounds are unable to activate iNKT cells. Computational modelling shows that these ligands, while being capable of interacting with the CD1d receptor, create a different surface for the binary complex that makes formation of the ternary complex with the iNKT T-cell receptor difficult. Together these results suggest that the reported activity might have been due to an impurity in the original isolated sample, and highlights the importance of taking care when reporting biological activity from isolated natural products.<b></b></p>


2018 ◽  
Vol 115 (17) ◽  
pp. E4051-E4060 ◽  
Author(s):  
Wanjing Shang ◽  
Yong Jiang ◽  
Michael Boettcher ◽  
Kang Ding ◽  
Marianne Mollenauer ◽  
...  

Despite decades of research, mechanisms controlling T cell activation remain only partially understood, which hampers T cell-based immune cancer therapies. Here, we performed a genome-wide CRISPR screen to search for genes that regulate T cell activation. Our screen confirmed many of the known regulators in proximal T cell receptor signaling and, importantly, also uncovered a previously uncharacterized regulator, FAM49B (family with sequence similarity 49 member B). FAM49B deficiency led to hyperactivation of Jurkat T cells following T cell receptor stimulation, as indicated by enhancement of CD69 induction, PAK phosphorylation, and actin assembly. FAM49B directly interacted with the active form of the small GTPase Rac, and genetic disruption of the FAM49B–Rac interaction compromised FAM49B function. Thus, FAM49B inhibits T cell activation by repressing Rac activity and modulating cytoskeleton reorganization.


2011 ◽  
Vol 287 (2) ◽  
pp. 1269-1278 ◽  
Author(s):  
Esther Dawen Yu ◽  
Enrico Girardi ◽  
Jing Wang ◽  
Thien-Thi Mac ◽  
Karl O. A. Yu ◽  
...  

2011 ◽  
Vol 286 (18) ◽  
pp. 15973-15979 ◽  
Author(s):  
Bianca L. Bozna ◽  
Paolo Polzella ◽  
Christian Rankl ◽  
Rong Zhu ◽  
Mariolina Salio ◽  
...  

Invariant natural killer T (iNKT) cells are a population of T lymphocytes that play an important role in regulating immunity to infection and tumors by recognizing endogenous and exogenous CD1d-bound lipid molecules. Using soluble iNKT T cell receptor (TCR) molecules, we applied single molecule force spectroscopy for the investigation of the iNKT TCR affinity for human CD1d molecules loaded with glycolipids differing in the length of the phytosphingosine chain using either recombinant CD1d molecules or lipid-pulsed THP1 cells. In both settings, the dissociation of the iNKT TCR from human CD1d molecules loaded with the lipid containing the longer phytosphingosine chain required higher unbinding forces compared with the shorter phytosphingosine lipid. Our findings are discussed in the context of previous results obtained by surface plasmon resonance measurements. We present new insights into the energy landscape and the kinetic rate constants of the iNKT TCR/human CD1d-glycosphingolipid interaction and emphasize the unique potential of single molecule force spectroscopy on living cells.


Sign in / Sign up

Export Citation Format

Share Document