scholarly journals Mitochondrial Biogenesis in Neurons: How and Where

2021 ◽  
Vol 22 (23) ◽  
pp. 13059
Author(s):  
Carlos Cardanho-Ramos ◽  
Vanessa Alexandra Morais

Neurons rely mostly on mitochondria for the production of ATP and Ca2+ homeostasis. As sub-compartmentalized cells, they have different pools of mitochondria in each compartment that are maintained by a constant mitochondrial turnover. It is assumed that most mitochondria are generated in the cell body and then travel to the synapse to exert their functions. Once damaged, mitochondria have to travel back to the cell body for degradation. However, in long cells, like motor neurons, this constant travel back and forth is not an energetically favourable process, thus mitochondrial biogenesis must also occur at the periphery. Ca2+ and ATP levels are the main triggers for mitochondrial biogenesis in the cell body, in a mechanism dependent on the Peroxisome-proliferator-activated γ co-activator-1α-nuclear respiration factors 1 and 2-mitochondrial transcription factor A (PGC-1α-NRF-1/2-TFAM) pathway. However, even though of extreme importance, very little is known about the mechanisms promoting mitochondrial biogenesis away from the cell body. In this review, we bring forward the evoked mechanisms that are at play for mitochondrial biogenesis in the cell body and periphery. Moreover, we postulate that mitochondrial biogenesis may vary locally within the same neuron, and we build upon the hypotheses that, in the periphery, local protein synthesis is responsible for giving all the machinery required for mitochondria to replicate themselves.

2011 ◽  
Vol 286 (12) ◽  
pp. 10605-10617 ◽  
Author(s):  
Adeel Safdar ◽  
Jonathan P. Little ◽  
Andrew J. Stokl ◽  
Bart P. Hettinga ◽  
Mahmood Akhtar ◽  
...  

Endurance exercise is known to induce metabolic adaptations in skeletal muscle via activation of the transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α). PGC-1α regulates mitochondrial biogenesis via regulating transcription of nuclear-encoded mitochondrial genes. Recently, PGC-1α has been shown to reside in mitochondria; however, the physiological consequences of mitochondrial PGC-1α remain unknown. We sought to delineate if an acute bout of endurance exercise can mediate an increase in mitochondrial PGC-1α content where it may co-activate mitochondrial transcription factor A to promote mtDNA transcription. C57Bl/6J mice (n = 12/group; ♀ = ♂) were randomly assigned to sedentary (SED), forced-endurance (END) exercise (15 m/min for 90 min), or forced endurance +3 h of recovery (END+3h) group. The END group was sacrificed immediately after exercise, whereas the SED and END+3h groups were euthanized 3 h after acute exercise. Acute exercise coordinately increased the mRNA expression of nuclear and mitochondrial DNA-encoded mitochondrial transcripts. Nuclear and mitochondrial abundance of PGC-1α in END and END+3h groups was significantly higher versus SED mice. In mitochondria, PGC-1α is in a complex with mitochondrial transcription factor A at mtDNA D-loop, and this interaction was positively modulated by exercise, similar to the increased binding of PGC-1α at the NRF-1 promoter. We conclude that in response to acute altered energy demands, PGC-1α re-localizes into nuclear and mitochondrial compartments where it functions as a transcriptional co-activator for both nuclear and mitochondrial DNA transcription factors. These results suggest that PGC-1α may dynamically facilitate nuclear-mitochondrial DNA cross-talk to promote net mitochondrial biogenesis.


2001 ◽  
Vol 90 (1) ◽  
pp. 389-396 ◽  
Author(s):  
Joe W. Gordon ◽  
Arne A. Rungi ◽  
Hidetoshi Inagaki ◽  
David A. Hood

Mitochondrial transcription factor A (Tfam) is a nuclear-encoded gene product that is imported into mitochondria and is required for the transcription of mitochondrial DNA (mtDNA). We hypothesized that conditions known to produce mitochondrial biogenesis in skeletal muscle would be preceded by an increase in Tfam expression. Therefore, rat muscle was stimulated (10 Hz, 3 h/day). Tfam mRNA levels were significantly elevated (by 55%) at 4 days and returned to control levels at 14 days. Tfam import into intermyofibrillar (IMF) mitochondria was increased by 52 and 61% ( P < 0.05) at 5 and 7 days, respectively. This corresponded to an increase in the level of import machinery components. Immunoblotting data indicated that IMF Tfam protein content was increased by 63% ( P < 0.05) at 7 days of stimulation. This was associated with a 49% ( P < 0.05) increase in complex formation at the mtDNA promoter and a 65% ( P< 0.05) increase in the levels of a mitochondrial transcript, cytochrome- c oxidase (COX) subunit III. Similarly, COX enzyme activity was elevated by 71% ( P < 0.05) after 7 days of contractile activity. These results indicate that early events in mitochondrial biogenesis include increases in Tfam mRNA, followed by accelerations in mitochondrial import and increased Tfam content, which correspond with increased binding to the mtDNA promoter region. This was accompanied by increased mitochondrial transcript levels and elevated COX activity. These data support the role of Tfam as a regulatory protein involved in contractile activity-induced mitochondrial biogenesis.


2012 ◽  
Vol 303 (12) ◽  
pp. E1419-E1427 ◽  
Author(s):  
Hirotaka Yamamoto ◽  
Katsutaro Morino ◽  
Yoshihiko Nishio ◽  
Satoshi Ugi ◽  
Takeshi Yoshizaki ◽  
...  

MicroRNAs (miRNAs) are important posttranscriptional regulators of various biological pathways. In this study, we focused on the role of miRNAs during mitochondrial biogenesis in skeletal muscle. The expression of miR-494 was markedly decreased in murine myoblast C2C12 cells during myogenic differentiation, accompanied by an increase in mtDNA. Furthermore, the expression of predicted target genes for miR-494, including mitochondrial transcription factor A (mtTFA) and Forkhead box j3 (Foxj3), was posttranscriptionally increased during myogenic differentiation. Knockdown of miR-494 resulted in increased mitochondrial content and upregulation of mtTFA and Foxj3 at the protein level. A 3′-untranslated region reporter assay revealed that miR-494 knockdown directly upregulated the luciferase activity of mtTFA and Foxj3. All of these observations were reversed by overexpression of miR-494. Furthermore, the miR-494 content significantly decreased after endurance exercise in C57BL/6J mice, accompanied by an increase in expression of mtTFA and Foxj3 proteins. These results suggest that miR-494 regulates mitochondrial biogenesis by downregulating mtTFA and Foxj3 during myocyte differentiation and skeletal muscle adaptation to physical exercise.


2004 ◽  
Vol 63 (2) ◽  
pp. 275-278 ◽  
Author(s):  
Edward O. Ojuka

Contractile activity induces mitochondrial biogenesis and increases glucose transport capacity in muscle. There has been much research on the mechanisms responsible for these adaptations. The present paper reviews the evidence, which indicates that the decrease in the levels of high-energy phosphates, leading to activation of AMP kinase (AMPK), and the increase in cytosolic Ca2+, which activates Ca2+/calmodulin-dependent protein kinase (CAMK), are signals that initiate these adaptative responses. Although the events downstream of AMPK and CAMK have not been well characterized, these events lead to activation of various transcription factors, including: nuclear respiratory factors (NRF) 1 and 2, which cause increased expression of proteins of the respiratory chain; PPAR-α, which up regulates the levels of enzymes of β oxidation; mitochondrial transcription factor A, which activates expression of the mitochondrial genome; myocyte-enhancing factor 2A, the transcription factor that regulates GLUT4 expression. The well-orchestrated expression of the multitude of proteins involved in these adaptations is mediated by the rapid activation of PPARγ co-activator (PGC) 1, a protein that binds to various transcription factors to maximize transcriptional activity. Activating AMPK using 5-aminoimidizole-4-carboxamide-1-β-D-riboside (AICAR) and increasing cytoplasmic Ca2+using caffeine, W7 or ionomycin in L6 myotubes increases the concentration of mitochondrial enzymes and GLUT4 and enhances the binding of NRF-1 and NRF-2 to DNA. AICAR and Ca-releasing agents also increase the levels of PGC-1, mitochondrial transcription factor A and myocyte-enhancing factors 2A and 2D. These results are similar to the responses seen in muscle during the adaptation to endurance exercise and show that L6 myotubes are a suitable model for studying the mechanisms by which exercise causes the adaptive responses in muscle mitochondria and glucose transport.


Sign in / Sign up

Export Citation Format

Share Document