scholarly journals Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato (Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress

2021 ◽  
Vol 22 (24) ◽  
pp. 13535
Author(s):  
Rui Ma ◽  
Weigang Liu ◽  
Shigui Li ◽  
Xi Zhu ◽  
Jiangwei Yang ◽  
...  

The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 401
Author(s):  
Zhen Liu ◽  
Yuhui Liu ◽  
Jeffrey A. Coulter ◽  
Baoyun Shen ◽  
Yuanming Li ◽  
...  

WD40 proteins, also known as WD40 domain proteins, constitute a large gene family in eukaryotes and play multiple roles in cellular processes. However, systematic identification and analysis of WD40 proteins have not yet been reported in potato (Solanum tuberosum L.). In the present study, 178 potato WD40 (StWD40) genes were identified and their distribution on chromosomes, gene structure, and conserved motifs were assessed. According to their structural and phylogenetic protein features, these 178 StWD40 genes were classified into 14 clusters and 10 subfamilies. Collinearity analysis showed that segmental duplication events played a major role in the expansion of the StWD40 gene family. Synteny analysis indicated that 45 and 23 pairs of StWD40 genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and that these gene pairs evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-specific expression and abiotic stress-responsive StWD40 genes in doubled monoploid potato (DM). Furthermore, we further analyzed the WD40 genes might be involved in anthocyanin biosynthesis and drought stress in tetraploid potato cultivars based on RNA-seq data. In addition, a protein interaction network of two homologs of Arabidopsis TTG1, which is involved in anthocyanin biosynthesis, was constructed to identify proteins that might be related to anthocyanin biosynthesis. The result showed that there were 112 pairs of proteins interacting with TTG1, with 27 being differentially expressed in pigmented tissues. This study indicates that WD40 proteins in potato might be related to anthocyanin biosynthesis and abiotic stress responses.


2020 ◽  
Author(s):  
Devanshi Chandel Upadhyaya ◽  
Deepak Singh Bagri ◽  
Chandrama Prakash Upadhyaya ◽  
Ashwani Kumar ◽  
Muthu Thiruvengadam ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1989 ◽  
Author(s):  
Dan Luo ◽  
Xiaoming Hou ◽  
Yumeng Zhang ◽  
Yuancheng Meng ◽  
Huafeng Zhang ◽  
...  

Dehydrins (DHNs), as a sub-family of group two late embryogenesis-abundant (LEA) proteins, have attracted considerable interest owing to their functions in enhancing abiotic stress tolerance in plants. Our previous study showed that the expression of CaDHN5 (a dehydrin gene from pepper) is strongly induced by salt and osmotic stresses, but its function was not clear. To understand the function of CaDHN5 in the abiotic stress responses, we produced pepper (Capsicum annuum L.) plants, in which CaDHN5 expression was down-regulated using VIGS (Virus-induced Gene Silencing), and transgenic Arabidopsis plants overexpressing CaDHN5. We found that knock-down of CaDHN5 suppressed the expression of manganese superoxide dismutase (MnSOD) and peroxidase (POD) genes. These changes caused more reactive oxygen species accumulation in the VIGS lines than control pepper plants under stress conditions. CaDHN5-overexpressing plants exhibited enhanced tolerance to salt and osmotic stresses as compared to the wild type and also showed increased expression of salt and osmotic stress-related genes. Interestingly, our results showed that many salt-related genes were upregulated in our transgenic Arabidopsis lines under salt or osmotic stress. Taken together, our results suggest that CaDHN5 functions as a positive regulator in the salt and osmotic stress signaling pathways.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Aditya Banerjee ◽  
Aryadeep Roychoudhury

WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of theWRKYgenes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.


Sign in / Sign up

Export Citation Format

Share Document