scholarly journals Molecular Characterization of U-Box E3 Ubiquitin Ligases (TaPUB2 and TaPUB3) Involved in the Positive Regulation of Drought Stress Response in Arabidopsis

2021 ◽  
Vol 22 (24) ◽  
pp. 13658
Author(s):  
Jae Ho Kim ◽  
Moon Seok Kim ◽  
Dae Yeon Kim ◽  
Joseph Noble Amoah ◽  
Yong Weon Seo

Plant U-box E3 ubiquitin ligase (PUB) is involved in various environmental stress conditions. However, the molecular mechanism of U-box proteins in response to abiotic stress in wheat remains unknown. In this study, two U-box E3 ligase genes (TaPUB2 and TaPUB3), which are highly expressed in response to adverse abiotic stresses, were isolated from common wheat, and their cellular functions were characterized under drought stress. Transient expression assay revealed that TaPUB2 was localized in the cytoplasm and Golgi apparatus, whereas TaPUB3 was expressed only in the Golgi apparatus in wheat protoplasts. Additionally, TaPUB2 and TaPUB3 underwent self-ubiquitination. Moreover, TaPUB2/TaPUB3 heterodimer was identified in yeast and the cytoplasm of wheat protoplasts using a pull-down assay and bimolecular fluorescence complementation analysis. Heterogeneous overexpression of TaPUB2 and TaPUB3 conferred tolerance to drought stress. Taken together, these results implied that the heterodimeric form of U-box E3 ubiquitin ligases (TaPUB2/TaPUB3) responded to abiotic stress and roles as a positive regulator of drought stress tolerance.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5938
Author(s):  
Jeongkwan Hong ◽  
Minho Won ◽  
Hyunju Ro

The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1015
Author(s):  
Utsa Bhaduri ◽  
Giuseppe Merla

Ubiquitination is a post-translational modification that has pivotal roles in protein degradation and diversified cellular processes, and for more than two decades it has been a subject of interest in the biotech or biopharmaceutical industry. Tripartite motif (TRIM) family proteins are known to have proven E3 ubiquitin ligase activities and are involved in a multitude of cellular and physiological events and pathophysiological conditions ranging from cancers to rare genetic disorders. Although in recent years many kinds of E3 ubiquitin ligases have emerged as the preferred choices of big pharma and biotech startups in the context of protein degradation and disease biology, from a surface overview it appears that TRIM E3 ubiquitin ligases are not very well recognized yet in the realm of drug discovery. This article will review some of the blockbuster scientific discoveries and technological innovations from the world of ubiquitination and E3 ubiquitin ligases that have impacted the biopharma community, from biotech colossuses to startups, and will attempt to evaluate the future of TRIM family proteins in the province of E3 ubiquitin ligase-based drug discovery.


Genetics ◽  
2020 ◽  
Vol 215 (3) ◽  
pp. 699-712 ◽  
Author(s):  
Ann M. Feke ◽  
Jing Hong ◽  
Wei Liu ◽  
Joshua M. Gendron

Targeted degradation of proteins is mediated by E3 ubiquitin ligases and is important for the execution of many biological processes. Redundancy has prevented the genetic characterization of many E3 ubiquitin ligases in plants. Here, we performed a reverse genetic screen in Arabidopsis using a library of dominant-negative U-box-type E3 ubiquitin ligases to identify their roles in flowering time and reproductive development. We identified five U-box decoy transgenic populations that have defects in flowering time or the floral development program. We used additional genetic and biochemical studies to validate PLANT U-BOX 14 (PUB14), MOS4-ASSOCIATED COMPLEX 3A (MAC3A), and MAC3B as bona fide regulators of flowering time. This work demonstrates the widespread importance of E3 ubiquitin ligases in floral reproductive development. Furthermore, it reinforces the necessity of dominant-negative strategies for uncovering previously unidentified regulators of developmental transitions in an organism with widespread genetic redundancy, and provides a basis on which to model other similar studies.


2008 ◽  
Vol 20 (7) ◽  
pp. 1899-1914 ◽  
Author(s):  
Seok Keun Cho ◽  
Moon Young Ryu ◽  
Charlotte Song ◽  
June M. Kwak ◽  
Woo Taek Kim

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Guy Adler ◽  
Zvia Konrad ◽  
Lyad Zamir ◽  
Amit Kumar Mishra ◽  
Dina Raveh ◽  
...  

2007 ◽  
Vol 19 (5) ◽  
pp. 1071-1080 ◽  
Author(s):  
Eng-Hui Chew ◽  
Thurka Poobalasingam ◽  
Christopher J. Hawkey ◽  
Thilo Hagen

2012 ◽  
Vol 160 (1) ◽  
pp. 556-568 ◽  
Author(s):  
Dong Hye Seo ◽  
Moon Young Ryu ◽  
Fabien Jammes ◽  
Jae Hwan Hwang ◽  
Michelle Turek ◽  
...  

Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 62 ◽  
Author(s):  
Nikolaos Antoniou ◽  
Nefeli Lagopati ◽  
Dimitrios Ilias Balourdas ◽  
Michail Nikolaou ◽  
Alexandros Papalampros ◽  
...  

The genome is exposed daily to many deleterious factors. Ubiquitination is a mechanism that regulates several crucial cellular functions, allowing cells to react upon various stimuli in order to preserve their homeostasis. Ubiquitin ligases act as specific regulators and actively participate among others in the DNA damage response (DDR) network. UBE4B is a newly identified member of E3 ubiquitin ligases that appears to be overexpressed in several human neoplasms. The aim of this review is to provide insights into the role of UBE4B ubiquitin ligase in DDR and its association with p53 expression, shedding light particularly on the molecular mechanisms of carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document