scholarly journals Evaporation Modeling of Water Droplets in a Transonic Compressor Cascade under Fogging Conditions

Author(s):  
Adrian Seck ◽  
Silvio Geist ◽  
Janneck Harbeck ◽  
Bernhard Weigand ◽  
Franz Joos

High-fogging is widely used to rapidly increase the power outputs of stationary gas turbines. Therefore, water droplets are injected into the inflow air, and a considerable number enter the compressor. Within this paper, the primary process of droplet evaporation is investigated closely. A short discussion about the influential parameters ascribes a major significance to the slip velocity between ambient gas flow and droplets. Hence, experimental results from a transonic compressor cascade are shown to evaluate the conditions in real high-fogging applications. The measured parameter range is used for direct numerical simulations to extract evaporation rates depending on inflow conditions and relative humidity of the air flow. Finally, an applicable correlation for the Sherwood number in the form of S h ( R e 1 / 2 S c 1 / 3 ) is suggested.

2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Niklas Neupert ◽  
Birger Ober ◽  
Franz Joos

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines (GT). Most of the studies concerning this topic focus on the problem from a thermodynamic point of view. Only a few studies, however, were undertaken to investigate the droplet behavior in the flow channel of a compressor. In this paper, results of experimental investigation of a water laden flow through a transonic compressor cascade are presented. A finely dispersed spray was used in the measurements (D10 < 10 μm). Results of the droplet behavior are shown in terms of shadowgraphy images and images of the blade surface film pattern. The angle of attack, the incoming velocity, and the water load were varied. The qualitative observations are related to laser Doppler and phase Doppler anemometer (LDA/PDA) data taken in the flow channel and at the outlet of the cascade. The data represent a base for numerical and mean line models of two-phase compressor flow.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Niklas Neupert ◽  
Janneck Christoph Harbeck ◽  
Franz Joos

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle, droplets entering the compressor increase the risk of water droplet erosion and deposition of water on the blades leading to an increase of required torque and profile loss. Due to this, detailed information about the structure and the amount of water on the surface is key for compressor performance. Experiments were conducted with a droplet laden flow in a transonic compressor cascade focusing on the film formed by the deposited water. Two approaches were taken. In the first approach, the film thickness on the blade was directly measured using white light interferometry. Due to significant distortion of the flow caused by the measurement system, a transfer of the measured film thickness to the undisturbed case is not possible. Therefore, a film model is adapted to describe the film flow in terms of height averaged film parameters. In the second approach, experiments were conducted in an undisturbed cascade setup and the water film pattern was measured using a nonintrusive quantitative image processing tool. Utilizing the measured flow pattern in combination with findings from the literature, the rivulet flow structure is resolved. From continuity of the water flow, a film thickness is derived showing good agreement with the previously calculated results. Using both approaches, a three-dimensional (3D) reconstruction of the water film pattern is created giving first experimental results of the film forming on stationary compressor blades under overspray fogging conditions.


2017 ◽  
Vol 374 ◽  
pp. 131-147
Author(s):  
Gambo Kofar Bai Dayyabu ◽  
Hai Zhang ◽  
Qun Zheng ◽  
Salman Abdu

Wet compression process has been widely accepted as a measure of increasing the performance of industrial gas turbine, in the present work, in-depth analysis on the principle aspects of wet compression, more specifically, the influence of injected water droplets diameter, surface temperature, and their effects on the behavior of axial flow transonic compressor and gas turbine performance were analyzed using computational fluid dynamic. Injected water droplets and gas flow phase change was most intense in the area adjacent to shockwaves and were the slip velocity of the droplet is highest. Water injection in to the compressor rotor is a little perturbation to the flow field due to the formation of flow separation, evaporation rate, increasing weber number, reduction in the inlet temperature, and velocity vortex pattern relatively different from that of the dry case. The effects of water droplets on the rotor region at injection rate of 1%, shows decrease in the inlet temperature of 11%, outlet temperature 5% and uplift the efficiency to 1.5%.


Author(s):  
Niklas Neupert ◽  
Birger Ober ◽  
Franz Joos

In recent years overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Most of the studies concerning this topic focus on the problem from a thermodynamic point of view as summarized by Eisfeld and Joos [1]. Only a few studies, however, were undertaken to investigate the droplet behavior in the flow channel of a compressor. Eisfeld and Joos [2] and Ober [3] revealed qualitative results showing a large variety of two-phase phenomena present. In this paper results of experimental investigation of a water laden flow through a compressor cascade are presented. A finely dispersed spray was used in the measurements (D10 < 10μm). Results of the droplet behavior in a transonic compressor cascade are shown in terms of shadowgraphy images and images of the blade surface film pattern. The angle of attack, the incoming velocity and the water load were varied to estimate the influence of these parameters on the flow pattern. The qualitative observations of the flow pattern are related to LDA/PDA data of the flow channel and at the outlet of the cascade. The data represents a base for numerical and mean line models of two phase compressor flow concerning droplet-wall interactions as well as flow induced breakup.


Author(s):  
Niklas Neupert ◽  
Janneck Christoph Harbeck ◽  
Franz Joos

In recent years overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle droplets entering the compressor increase the risk of water droplet erosion and deposition of water on the blades leading to an increase of required torque and profile loss. Due to this detailed information about the structure and the amount of water on the surface is key for compressor performance. Experiments were conducted with a droplet laden flow in a transonic compressor cascade focusing on the film formed by the deposited water. Two approaches were taken. In the first approach the film thickness on the blade was directly measured using white light interferometry. Due to significant distortion of the flow caused by the measurement system a transfer of the measured film thickness to the undisturbed case is not possible. Therefore, a film model is adapted to describe the film flow in terms of height averaged film parameters. In the second approach experiments were conducted in an undisturbed cascade setup and the water film pattern was measured using a non-intrusive quantitative image processing tool. Utilizing the measured flow pattern in combination with findings from literature the rivulet flow structure is resolved. From continuity of the water flow a film thickness is derived showing good agreement with the previously calculated results. Using both approaches a 3D reconstruction of the water film pattern is created giving first experimental results of the film forming on stationary compressor blades under overspray fogging conditions.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Niklas Neupert ◽  
Janneck Christoph Harbeck ◽  
Franz Joos

In recent years overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle droplets entering the compressor increase the risk of water droplet erosion. Further deposited water leads to a higher sensitivity toward fouling due to an increased stickiness of the blades. Therefore, erosion resistant hydrophobic coatings are applied to the first stages of compressors. Although some patents claim the use of such coatings the aerodynamic impact of a different wettability is not regarded so far. This issue was addressed in the field of aerodynamic efficiency of wings in heavy rain showing higher penalty for hydrophobic coatings. In this study, the issue of a different blade surface wettability in a linear transonic compressor cascade is addressed. Different coatings are applied resulting in contact angles of 51–95 deg. The inflow Mach number was fixed at design inflow Mach number, and the inflow angle was varied over a broad range. The effect on the water film pattern is analyzed in terms of position of film breakup, rivulet width, and totally wetted surface. The performance of the cascade under two-phase flow was analyzed using laser Doppler anemometry/phase Doppler anemometry measurement technique in terms of loss coefficient based on wake momentum thickness and flow turning. It is shown that the wettability of the surface has significant effects on the film structure leading to a lower fraction of wetted surface with increasing contact angle. The influence on performance is limited to effects in the proximity of the surface and is dependent on operation point. While in design conditions hydrophilic coating show lower losses, the trend is vice-versa for off-design conditions. The data represent first experimental work on the influence of surface wettability in a droplet-laden flow supporting positive features for hydrophobic coatings in gas turbine compressors.


Author(s):  
Niklas Neupert ◽  
Janneck Christoph Harbeck ◽  
Franz Joos

In recent years overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle droplets entering the compressor increase the risk of water droplet erosion. Further deposited water leads to a higher sensitivity towards fouling due to an increased stickiness of the blades. Therefore erosion resistant hydrophobic coatings are applied to the first stages of compressors. Although some patents claim the use of such coatings the aerodynamic impact of a different wettability is not regarded so far. This issue was addressed in the field of aerodynamic efficiency of wings in heavy rain showing higher penalty for hydrophobic coatings. In this study the issue of a different blade surface wettability in a linear transonic compressor cascade is addressed. Different coatings are applied resulting in contact angles of 51–95°. The inflow Mach number was fixed at design inflow Mach number and the inflow angle was varied over a broad range. The effect on the water film pattern is analyzed in terms of position of film breakup, rivulet width and totally wetted surface. The performance of the cascade under two-phase flow was analyzed using LDA/PDA measurement technique in terms of loss coefficient based on wake momentum thickness and flow turning. It is shown that the wettability of the surface has significant effects on the film structure leading to a lower fraction of wetted surface with increasing contact angle. The influence on performance is limited to effects in the proximity of the surface and is dependent on operation point. While in design conditions hydrophilic coating show lower losses the trend is vice-versa for off-design conditions. The data represent first experimental work on the influence of surface wettability in a droplet-laden flow supporting positive features for hydrophobic coatings in gas turbine compressors.


2021 ◽  
Vol 11 (11) ◽  
pp. 4845
Author(s):  
Mohammad Hossein Noorsalehi ◽  
Mahdi Nili-Ahmadabadi ◽  
Seyed Hossein Nasrazadani ◽  
Kyung Chun Kim

The upgraded elastic surface algorithm (UESA) is a physical inverse design method that was recently developed for a compressor cascade with double-circular-arc blades. In this method, the blade walls are modeled as elastic Timoshenko beams that smoothly deform because of the difference between the target and current pressure distributions. Nevertheless, the UESA is completely unstable for a compressor cascade with an intense normal shock, which causes a divergence due to the high pressure difference near the shock and the displacement of shock during the geometry corrections. In this study, the UESA was stabilized for the inverse design of a compressor cascade with normal shock, with no geometrical filtration. In the new version of this method, a distribution for the elastic modulus along the Timoshenko beam was chosen to increase its stiffness near the normal shock and to control the high deformations and oscillations in this region. Furthermore, to prevent surface oscillations, nodes need to be constrained to move perpendicularly to the chord line. With these modifications, the instability and oscillation were removed through the shape modification process. Two design cases were examined to evaluate the method for a transonic cascade with normal shock. The method was also capable of finding a physical pressure distribution that was nearest to the target one.


2021 ◽  
Author(s):  
Jiuliang Gan ◽  
Toshinori Watanabe ◽  
Takehiro Himeno

Abstract The unsteady behavior of the shock wave was studied in an oscillating transonic compressor cascade. The experimental measurement and corresponding numerical simulation were conducted on the cascade with different shock patterns based on influence coefficient method. The unsteady pressure distribution on blade surface was measured with fast-response pressure-sensitive paint (PSP) to capture the unsteady aerodynamic force as well as the shock wave movement. It was found that the movement of shock waves in the neighboring flow passages of the oscillating blade was almost anti-phase between the two shock patterns, namely, the double shocks pattern and the merged shock pattern. It was also found that the amplitude of the unsteady pressure caused by the passage shock wave was very large under the merged shock pattern compared with the double shocks pattern. The stability of blade vibration was also analyzed for both shock patterns including 3-D flow effect. These findings were thought to shed light on the fundamental understanding of the unsteady aerodynamic characteristics of oscillating cascade caused by the shock wave behavior.


Sign in / Sign up

Export Citation Format

Share Document