scholarly journals High-Fidelity Router Emulation Technologies Based on Multi-Scale Virtualization

Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
He Song ◽  
Xiaofeng Wang ◽  
Mengdong Zhai ◽  
Guangjie Zhang

Virtualization has the advantages of strong scalability and high fidelity in host node emulation. It can effectively meet the requirements of network emulation, including large scale, high fidelity, and flexible construction. However, for router emulation, virtual routers built with virtualization and routing software use Linux Traffic Control to emulate bandwidth, delay, and packet loss rates, which results in serious distortions in congestion scenarios. Motivated by this deficiency, we propose a novel router emulation method that consists of virtualization plane, routing plane, and a traffic control method. We designed and implemented our traffic control module in multi-scale virtualization, including the kernel space of a KVM-based virtual router and the user space of a Docker-based virtual router. Experiments show not only that the proposed method achieves high-fidelity router emulation, but also that its performance is consistent with that of a physical router in congestion scenarios. These findings provide good support for network research into congestion scenarios on virtualization-based emulation platforms.

2019 ◽  
Vol 14 ◽  
Author(s):  
Tayyab Khan ◽  
Karan Singh ◽  
Kamlesh C. Purohit

Background: With the growing popularity of various group communication applications such as file transfer, multimedia events, distance learning, email distribution, multiparty video conferencing and teleconferencing, multicasting seems to be a useful tool for efficient multipoint data distribution. An efficient communication technique depends on the various parameters like processing speed, buffer storage, and amount of data flow between the nodes. If data exceeds beyond the capacity of a link or node, then it introduces congestion in the network. A series of multicast congestion control algorithms have been developed, but due to the heterogeneous network environment, these approaches do not respond nor reduce congestion quickly whenever network behavior changes. Objective: Multicasting is a robust and efficient one-to-many (1: M) group transmission (communication) technique to reduced communication cost, bandwidth consumption, processing time and delays with similar reliability (dependability) as of regular unicast. This patent presents a novel and comprehensive congestion control method known as integrated multicast congestion control approach (ICMA) to reduce packet loss. Methods: The proposed mechanism is based on leave-join and flow control mechanism along with proportional integrated and derivate (PID) controller to reduce packet loss, depending on the congestion status. In the proposed approach, Proportional integrated and derivate controller computes expected incoming rate at each router and feedback this rate to upstream routers of the multicast network to stabilize their local buffer occupancy. Results: Simulation results on NS-2 exhibit the immense performance of the proposed approach in terms of delay, throughput, bandwidth utilization, and packet loss than other existing methods. Conclusion: The proposed congestion control scheme provides better bandwidth utilization and throughput than other existing approaches. Moreover, we have discussed existing congestion control schemes with their research gaps. In the future, we are planning to explore the fairness and quality of service issue in multicast communication.


2016 ◽  
Vol 26 (1) ◽  
pp. 7
Author(s):  
Jose Carlos Tavara Carbajal

RESUMENEste documento tiene como objetivo analizar el comportamiento de la calidad del servicio del protocolo IPv6 sobre el tráfico de video, para esto se realizó sobre un entorno real y se llevó acabo el análisis de resultados a través de un software estadístico de control del tráfico.Palabras Clave.-  Calidad de Servicio, Ancho de Banda, Retardo, Fluctuación de Retardo, Pérdidas de Paquetes.ABSTRACTThis paper has aimed to analyze of the service quality of the IPv6 protocol on video traffic, this was about a real environment and was conducted analysis of results through statistical traffic control software. Key words- Quality of Service, Bandwidth, End to end delay, Jitter, Packet loss.


2016 ◽  
Vol 26 (1) ◽  
pp. 1
Author(s):  
Jose Carlos Tavara Carbajal

Este documento tiene como objetivo analizar el comportamiento de la calidad del servicio del protocolo IPv6 sobre el tráfico de video, para esto se realizó sobre un entorno real y se llevó acabo el análisis de resultados a través de un software estadístico de control del tráfico.Palabras Clave.-  Calidad de Servicio, Ancho de Banda, Retardo, Fluctuación de Retardo, Pérdidas de Paquetes.ABSTRACT  This paper has aimed to analyze of the service quality of the IPv6 protocol on video traffic, this was about a real environment and was conducted analysis of results through statistical traffic control software.  Key words.- Quality of Service, Bandwidth, End to end delay, Jitter, Packet loss.


2016 ◽  
Vol 26 (1) ◽  
pp. 7
Author(s):  
Jose Carlos Tavara Carbajal

RESUMENEste documento tiene como objetivo analizar el comportamiento de la calidad del servicio del protocolo IPv6 sobre el tráfico de video, para esto se realizó sobre un entorno real y se llevó acabo el análisis de resultados a través de un software estadístico de control del tráfico.Palabras Clave.-  Calidad de Servicio, Ancho de Banda, Retardo, Fluctuación de Retardo, Pérdidas de Paquetes.ABSTRACTThis paper has aimed to analyze of the service quality of the IPv6 protocol on video traffic, this was about a real environment and was conducted analysis of results through statistical traffic control software. Keywords- Quality of Service, Bandwidth, End to end delay, Jitter, Packet loss.


2020 ◽  
Vol 12 (20) ◽  
pp. 8369
Author(s):  
Mohammad Rahimi

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Na Cheng ◽  
Shuli Song ◽  
Wei Li

The ionosphere is a significant component of the geospace environment. Storm-induced ionospheric anomalies severely affect the performance of Global Navigation Satellite System (GNSS) Positioning, Navigation, and Timing (PNT) and human space activities, e.g., the Earth observation, deep space exploration, and space weather monitoring and prediction. In this study, we present and discuss the multi-scale ionospheric anomalies monitoring over China using the GNSS observations from the Crustal Movement Observation Network of China (CMONOC) during the 2015 St. Patrick’s Day storm. Total Electron Content (TEC), Ionospheric Electron Density (IED), and the ionospheric disturbance index are used to monitor the storm-induced ionospheric anomalies. This study finally reveals the occurrence of the large-scale ionospheric storms and small-scale ionospheric scintillation during the storm. The results show that this magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. At the beginning of the main phase of the magnetic storm, both TEC and IED were significantly enhanced. There was long-duration depletion in the topside ionospheric TEC during the recovery phase of the storm. This study also reveals the response and variations in regional ionosphere scintillation. The Rate of the TEC Index (ROTI) was exploited to investigate the ionospheric scintillation and compared with the temporal dynamics of vertical TEC. The analysis of the ROTI proved these storm-induced TEC depletions, which suppressed the occurrence of the ionospheric scintillation. To improve the spatial resolution for ionospheric anomalies monitoring, the regional Three-Dimensional (3D) ionospheric model is reconstructed by the Computerized Ionospheric Tomography (CIT) technique. The spatial-temporal dynamics of ionospheric anomalies during the severe geomagnetic storm was reflected in detail. The IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs were maximum moved southward.


2020 ◽  
Author(s):  
Clément Beust ◽  
Erwin Franquet ◽  
Jean-Pierre Bédécarrats ◽  
Pierre Garcia ◽  
Jérôme Pouvreau ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3623
Author(s):  
Omar Said ◽  
Amr Tolba

Employment of the Internet of Things (IoT) technology in the healthcare field can contribute to recruiting heterogeneous medical devices and creating smart cooperation between them. This cooperation leads to an increase in the efficiency of the entire medical system, thus accelerating the diagnosis and curing of patients, in general, and rescuing critical cases in particular. In this paper, a large-scale IoT-enabled healthcare architecture is proposed. To achieve a wide range of communication between healthcare devices, not only are Internet coverage tools utilized but also satellites and high-altitude platforms (HAPs). In addition, the clustering idea is applied in the proposed architecture to facilitate its management. Moreover, healthcare data are prioritized into several levels of importance. Finally, NS3 is used to measure the performance of the proposed IoT-enabled healthcare architecture. The performance metrics are delay, energy consumption, packet loss, coverage tool usage, throughput, percentage of served users, and percentage of each exchanged data type. The simulation results demonstrate that the proposed IoT-enabled healthcare architecture outperforms the traditional healthcare architecture.


2020 ◽  
Vol 34 (07) ◽  
pp. 11693-11700 ◽  
Author(s):  
Ao Luo ◽  
Fan Yang ◽  
Xin Li ◽  
Dong Nie ◽  
Zhicheng Jiao ◽  
...  

Crowd counting is an important yet challenging task due to the large scale and density variation. Recent investigations have shown that distilling rich relations among multi-scale features and exploiting useful information from the auxiliary task, i.e., localization, are vital for this task. Nevertheless, how to comprehensively leverage these relations within a unified network architecture is still a challenging problem. In this paper, we present a novel network structure called Hybrid Graph Neural Network (HyGnn) which targets to relieve the problem by interweaving the multi-scale features for crowd density as well as its auxiliary task (localization) together and performing joint reasoning over a graph. Specifically, HyGnn integrates a hybrid graph to jointly represent the task-specific feature maps of different scales as nodes, and two types of relations as edges: (i) multi-scale relations capturing the feature dependencies across scales and (ii) mutual beneficial relations building bridges for the cooperation between counting and localization. Thus, through message passing, HyGnn can capture and distill richer relations between nodes to obtain more powerful representations, providing robust and accurate results. Our HyGnn performs significantly well on four challenging datasets: ShanghaiTech Part A, ShanghaiTech Part B, UCF_CC_50 and UCF_QNRF, outperforming the state-of-the-art algorithms by a large margin.


Sign in / Sign up

Export Citation Format

Share Document