scholarly journals Sanitation Improves Stored Product Insect Pest Management

Insects ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 77 ◽  
Author(s):  
William Morrison ◽  
Alexander Bruce ◽  
Rachel Wilkins ◽  
Chloe Albin ◽  
Frank Arthur

There is a large suite of insects that attack anthropogenic agricultural goods after harvest. Proper sanitation programs for food facilities are now recognized as the foundation of good integrated pest management (IPM) programs for stored products throughout the post-harvest supply chain. While good sanitation programs are generally thought to reduce the abundance and diversity of insects, there has been less appreciation of the manifold ways that sanitation interacts with a range of other IPM tactics to modulate their efficacy. Here, we review the literature on how the effectiveness of chemical, physical/cultural, biological, and behaviorally-based control tactics varies with changes in sanitation. In addition, we discuss how sanitation may affect ongoing pheromone- and kairomone-based monitoring programs. Where possible, we quantitatively compile and analyze the impact of sanitation on the fold-change in the efficacy of IPM tactics. We found that decreased sanitation negatively affected the efficacy of most tactics examined, with a mean 1.3–17-fold decrease in efficacy under poorer sanitation compared to better sanitation. Sanitation had neutral or mixed impacts on a few tactics as well. Overall, the literature suggests that sanitation should be of the utmost importance for food facility managers concerned about the efficacy of a wide range of management tactics.

2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


1995 ◽  
Vol 16 (1) ◽  
pp. 93-101
Author(s):  
D. Dakouo ◽  
S. Nacro ◽  
R. Post ◽  
Y. Traoré ◽  
S. Nokoe ◽  
...  

AbstractThe efficiency and profitability of an integrated pest management system consisting of a phytosanitary survey and threshold interventions (based on levels of insect damage) was tested at the Vallée du Kou irrigated rice scheme in Burkina Faso, for two consecutive crop seasons in 1987. There was a considerable advantage in cost, number of insecticidal applications and yield of a threshold intervention-based system over arbitrary or routine insecticidal application methods. The proposed method is considered to be environmentally friendly.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 143 ◽  
Author(s):  
Victor Jaoko ◽  
Clauvis Nji Tizi Taning ◽  
Simon Backx ◽  
Jackson Mulatya ◽  
Jan Van den Abeele ◽  
...  

Due to potential health and environmental risks of synthetic pesticides, coupled with their non-selectivity and pest resistance, there has been increasing demand for safer and biodegradable alternatives for insect pest management. Botanical pesticides have emerged as a promising alternative due to their non-persistence, high selectivity, and low mammalian toxicity. Six Meliaceae plant species, Azadirachta indica, Azadirachta excelsa, Azadirachta siamens, Melia azedarach, Melia toosendan, and Melia volkensii, have been subject to botanical pesticide evaluation. This review focuses on Melia volkensii, which has not been intensively studied. M. volkensii, a dryland tree species native to East Africa, has shown activity towards a broad range of insect orders, including dipterans, lepidopterans and coleopterans. Its extracts have been reported to have growth inhibiting and antifeedant properties against Schistocerca gregaria, Trichoplusia ni, Pseudaletia unipuncta, Epilachna varivestis, Nezara viridula, several Spodoptera species and other insect pests. Mortality in mosquitoes has also been reported. Several limonoids with a wide range of biological activities have been isolated from the plant, including volkensin, salannin, toosendanin, trichilin-class limonoids, volkendousin, kulactone among others. This paper presents a concise review of published information on the phytochemical composition and potential of M. volkensii for application in insect pest management.


2008 ◽  
Vol 48 (12) ◽  
pp. 1531 ◽  
Author(s):  
Joanne C. Holloway ◽  
Michael J. Furlong ◽  
Philip I. Bowden

Beneficial invertebrates (predators and parasitoids) can make significant contributions to the suppression of insect pest populations in many cropping systems. In Australia, natural enemies are incorporated into integrated pest management programs in cotton and horticultural agroecosystems. They are also often key components of effective programs for the management of insect pests of grain crops in other parts of the world. However, few studies have examined the contribution of endemic natural enemies to insect pest suppression in the diverse grain agroecosystems of Australia. The potential of these organisms is assessed by reviewing the role that natural enemies play in the suppression of the major pests of Australian grain crops when they occur in overseas grain systems or other local agroecosystems. The principal methods by which the efficacy of biological control agents may be enhanced are examined and possible methods to determine the impact of natural enemies on key insect pest species are described. The financial and environmental benefits of practices that encourage the establishment and improve the efficacy of natural enemies are considered and the constraints to adoption of these practices by the Australian grains industry are discussed.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 332 ◽  
Author(s):  
David W. Hagstrum ◽  
Christos G. Athanassiou

Integrated pest management (IPM) is being more widely used for managing stored product insects [...]


1994 ◽  
Vol 70 (6) ◽  
pp. 745-761 ◽  
Author(s):  
Peter de Groot ◽  
Jean J. Turgeon ◽  
Gordon E. Miller

Many of Canada's conifer seed orchards are entering their productive phase. In most, if not all seed orchards, insect pest management will be required in order to meet the seed production targets. Canadian seed orchard managers will soon need to know the basic requirements and what information is available to implement an insect pest management program. In this review, a synthesis is provided of the major components of an integrated pest management program for cone and seed insects. A list of the insect pests of conifer cones and seeds in Canada as well as features of their life cycles and population dynamics that could influence pest management strategies is presented. Current and future needs for insect damage appraisal and insect monitoring techniques are discussed. Finally, the various strategies and tactics to control insects are reviewed. Key words: conifer seed orchards, cone insects, seed insects, pest management strategies, integrated pest management


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 531b-531
Author(s):  
J. Nienhuis

REDCAHOR is the Spanish acronym for “Central American Vegetable Network.” Vegetables have traditionally been an important source of nutrients and vitamins in the diet in Central America. Vegetable production in this region is now changing as local consumers are demanding increased diversity and quality and international markets are expanding with “non-traditional” vegetable exports. The present restraints to expanded research and production of vegetables in the region include i) need for cultivars with increased insect and disease resistance, ii) poor and excessive use of pesticides, and iii) inadequate postharvest technology. In addition, there are few vegetable researchers in the region and response to their activities have not been coordinated. The goal of REDCAHOR is to develop a regional network of national institutions that can prioritize agendas and cooperate to maximize the impact of available resources. Establishment of a system of regional trials and cooperative regional programs in integrated pest management and plant breeding are currently under development. A series of regional workshops are planned, including integrated pest management, maintenance and use of genetic resources, organic production, and greenhouse production. In addition, REDCAHOR, in collaboration with the Escuela Agricola Panamerica in Honduras, will offer regional short-course training in vegetable breeding and genetics as well as vegetable production and management, including integrated pest management.


Sign in / Sign up

Export Citation Format

Share Document