scholarly journals Insecticidal and Antifeedant Activities of Malagasy Medicinal Plant (Cinnamosma sp.) Extracts and Drimane-Type Sesquiterpenes against Aedes aegypti Mosquitoes

Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 373 ◽  
Author(s):  
Inocente ◽  
Nguyen ◽  
Manwill ◽  
Benatrehina ◽  
Kweka ◽  
...  

The overuse of insecticides with limited modes of action has led to resistance in mosquito vectors. Thus, insecticides with novel modes of action are needed. Secondary metabolites in Madagascan plants of the genus Cinnamosma (Canellaceae) are commonly used in traditional remedies and known to elicit antifeedant and toxic effects in insect pests. Here we test the hypothesis that extracts of Cinnamosma sp. enriched in drimane sesquiterpenes are toxic and/or antifeedant to the yellow fever mosquito Aedes aegypti. We show that the bark and root extracts, which contain a higher abundance of drimane sesquiterpenes compared to leaves, were the most efficacious. Screening isolated compounds revealed cinnamodial to be the primary driver of adulticidal activity, whereas cinnamodial, polygodial, cinnafragrin A, and capsicodendrin contributed to the larvicidal activity. Moreover, an abundant lactone (cinnamosmolide) in the root extract synergized the larvicidal effects of cinnamodial. The antifeedant activity of the extracts was primarily contributed to cinnamodial, polygodial, and cinnamolide. Parallel experiments with warburganal isolated from Warburgia ugandensis (Canellaceae) revealed that aldehydes are critical for—and a hydroxyl modulates—insecticidal activity. Our results indicate that plant drimane sesquiterpenes provide valuable chemical platforms for developing insecticides and repellents to control mosquito vectors.

2019 ◽  
Author(s):  
Preston K. Manwill ◽  
Megha Kalsi ◽  
Sijin Wu ◽  
Xiaolin Cheng ◽  
Peter M. Piermarini ◽  
...  

AbstractThe Aedes aegypti mosquito serves as a major vector for viral diseases, such as dengue, chikungunya, and Zika, which are spreading across the globe and threatening public health. In addition to increased vector transmission, the prevalence of insecticide-resistant mosquitoes is also on the rise, thus solidifying the need for new, safe and effective insecticides to control mosquito populations. We recently discovered that cinnamodial, a unique drimane sesquiterpene dialdehyde of the Malagasy medicinal plant Cinnamosma fragrans, exhibited significant larval and adult toxicity to Ae. aegypti and was more efficacious than DEET – the gold standard for insect repellents – at repelling adult female Ae. aegypti from blood feeding. In this study several semisynthetic analogues of cinnamodial were prepared to probe the structure-activity relationship (SAR) for larvicidal, adulticidal and antifeedant activity against Ae. aegypti. Initial efforts were focused on modification of the dialdehyde functionality to produce more stable active analogues and to understand the importance of the 1,4-dialdehyde and the α,ß-unsaturated carbonyl in the observed bioactivity of cinnamodial against mosquitoes. This study represents the first investigation into the SAR of cinnamodial as an insecticide and repellent against the medically important Ae. aegypti mosquito.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2287
Author(s):  
Verena Spiegler

Extracts from the roots of Paullinia pinnata L. are used in West Africa as traditional remedies for a variety of diseases including infestations with soil-transmitted helminths. Based on the results of an ethnopharmacological survey in Ghana, an aqueous acetone (70%) extract was investigated for its anthelmintic and phytochemical properties. Partitioning of the crude extract followed by several fractionation steps of the ethyl acetate phase using Sephadex® LH-20, fast centrifugal partition chromatography, RP-18-MPLC and HPLC led to isolation of six oligomeric A-type procyanidins (1 to 6). To determine the anthelmintic activity, the crude extract, fractions and isolated compounds were tested in vitro against the model organism Caenorhabditis elegans. A significantly better activity was observed for the trimeric A-type procyanidin (1) compared to a B-type trimer. However, this effect could not be generalized for the tetrameric procyanidins, for which the type of the interflavan-linkage (4→6 vs. 4→8) had the greatest impact on the bioactivity. Besides the procyanidins, three novel compounds, isofraxidin-7-O-α-l-rhamnopyranosyl-(1″→6′)-β-d-glucopyranoside (17), 4-methoxycatechol-2-O-(5′′-O-vanilloyl-β-apiofuranosyl)-(1′′→2′)-β-glucopyranoside (18) and a 6-(3-methoxy-4-hydroxyphenyl)-hexane-2,4-diol-2-O-hexoside (19) were isolated together with further ten known compounds (7 to 16), mainly coumarins and coumarinolignans. Except for 3-β-d-glucopyranosyloxy-4-methyl-2(5H)-furanone (15), none of the isolated compounds has previously been described for P. pinnata. The anthelmintic activity was attributed to the presence of procyanidins, but not to any of the other compound classes. In summary, the findings rationalize the traditional use of P. pinnata root extracts as anthelmintic remedies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ilka Günther ◽  
Gerald Rimbach ◽  
Sandra Nevermann ◽  
Cathrina Neuhauser ◽  
Verena Stadlbauer ◽  
...  

Medicinal plant extracts are becoming increasingly important as an alternative for traditional drugs against diabetes mellitus (DM). For this reason, we initialized a target-based screening of 111 root extracts from an open access plant extract library (PECKISH) by ascertaining their in-vitro inhibitory efficacy on α-glucosidase. The two most active extracts Geum urbanum L. (roseroot) and Rhodiola rosea L. (avens root) were further tested for their antidiabetic activities in terms of their impact on different regulatory key points of glucose homeostasis. To this end, various enzyme- and cell culture-based in-vitro assays were employed including the determination of sodium-dependent glucose transporter 1 (SGLT1) activity in Caco-2 monolayers by Ussing chambers and of glucose transporter 4 (GLUT4) translocation in a GFP-reporter cell line. Subsequently, the antidiabetic potential of the root extracts were further evaluated in in-vivo models, namely hen’s eggs test and the fruit fly Drosophila melanogaster. Avens root extract was found to be a more potent inhibitor of the enzymes α-glucosidase and dipeptidyl peptidase-4 (DPP4) than roseroot extract. Most importantly, only avens root extract exhibited antidiabetic activity in the two in-vivo models eliciting a reduced blood glucose level in the in-ovo model and a decline of the triglyceride level in a dietary starch-induced D. melanogaster obesity model. Analyses of the polyphenolic composition of the avens root extract by HPLC revealed a high content of ellagic acid and its derivatives as well as ellagitannins such as pedunculagin, stenophyllanin, stachyurin, casuarinin and gemin A. In conclusion, avens root extract represents a promising medicinal plant that should be considered in further in-vivo studies on hyperglycemia in laboratory rodents and humans.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
A Sánchez-Medina ◽  
PC Stevenson ◽  
S Habtemariam ◽  
LM Peña-Rodríguez ◽  
O Corcoran ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 596
Author(s):  
Anuluck Junkum ◽  
Wanchai Maleewong ◽  
Atiporn Saeung ◽  
Danita Champakaew ◽  
Arpaporn Chansang ◽  
...  

Ligusticum sinense Oliv. cv. is a species of Umbelliferae (Apiaceae), a large plant family in the order Apiales. In this study, L. sinense hexane extract nanoemulsion gel (LHE-NEG) was investigated for mosquito repellency and compared to the standard chemical, N,N-diethyl-3-methylbenzamide (DEET), with the goal of developing a natural alternative to synthetic repellents in protecting against mosquito vectors. The results demonstrated that LHE-NEG afforded remarkable repellency against Aedes aegypti, Anopheles minimus, and Culex quinquefasciatus, with median protection times (MPTs) of 5.5 (4.5–6.0), 11.5 (8.5–12.5), and 11.25 (8.5–12.5) h, respectively, which was comparable to those of DEET-nanoemulsion gel (DEET-NEG: 8.5 (7.0–9.0), 12.0 (10.0–12.5), and 12.5 (10.0–13.5) h, respectively). Evaluation of skin irritation in 30 human volunteers revealed no potential irritant from LHE-NEG. The physical and biological stability of LHE-NEG were determined after being kept under heating/cooling cycle conditions. The stored samples of LHE-NEG exhibited some changes in appearance and differing degrees of repellency between those kept for 3 and 6 heating/cooling cycles, thus providing slightly shorter MPTs of 4.25 (4.0–4.5) and 3.25 (2.5–3.5) h, respectively, when compared to those of 5.0 (4.5–6.0) h in fresh preparation. These findings encourage commercially developed LHE-based products as an alternative to conventional synthetic repellents in preventing mosquito bites and helping to interrupt mosquito-borne disease transmission.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Sandeep Kumar Gaur ◽  
Krishna Kumar

Abstract Both seed and root extracts of the medicinal plant, Ashwagandha, Withania somnifera exhibit insect growth regulatory activity against the polyphagous pest, Pericallia ricini. Topical administration of W. somnifera seed and root extracts to last instar larvae of P. ricini disrupted moulting and metamorphosis, leading to a number of developmental abnormalities such as delay in larval-pupal and pupal-adult ecdysis, formation of larval-pupal, pupal-adult and larval-pupal-adult mosaics/chimeras, ecdysial failure, suppression of pupation and adult emergence and formation of abnormal pupae and adultoids. The treatment with seed extracts was more severe than that of root extracts as it completely suppressed the pupation and adult emergence. The results clearly suggest that the medicinal plant, W. somnifera acts as a potential insect growth regulatory (IGR) disrupting the moulting and metamorphosis as a consequence of interference with the endocrine system.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2546 ◽  
Author(s):  
Walter S. Leal

After a 40-year hiatus, the International Congress of Entomology (ICE 2016) convened in Orlando, Florida (September 25-30, 2016). One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti, is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus, also known as the common mosquito, is highly likely to be a vector in certain environments.


2018 ◽  
Vol 4 (2) ◽  
pp. 83-90
Author(s):  
Ign Joko Suyono ◽  
Aditya K. Karim

Dengue is the most important emerging tropical viral disease of humans in the world today. Aedes aegypti is a major mosquito vector responsible for transmitting many viral diseases and this mosquito that spreads major health problems like dengue fever. The resistance of Ae. aegypti to insecticides is already widespread and represents a serious problem for programmes aimed at the control and prevention of dengue in tropical countries. The search for compounds extracted from medicinal plant preparations as alternatives insecticide for mosquito control is in immediate need. Alternative approach for control Ae. aegypti dan virus dengue using the medicinal plant will be discussed in this paper.Key words: Medicinal plant, Aedes aegypti, dengue fever, dengue haemorragi fever, dengue shock syndrome


2020 ◽  
Vol 1 (2) ◽  
pp. 100-117
Author(s):  
Kripa Adhikari ◽  
Sudip Bhandari ◽  
Dikshya Niraula ◽  
Jiban Shrestha

Neem (Azadirachta indica A. Juss) is a member of Meliaceae family, a fast-growing tropical evergreen plant whose products were found effective against economically important insect pests and diseases. All parts of this plant particularly leaf, bark, and root extracts have the biopesticidal activities. Azadirachtin, a biopesticide obtained from neem extract, can be used for con-trolling various insect pests in agriculture. It acts on insects by repelling them, by inhibiting feeding, and by disrupting their growth, and reproduction. Neem-based formulations do not usually kill insects directly, but they can alter their behavior in significant ways to reduce pest damage to crops and reduce their reproductive potential. The neem is considered as an eas-ily accessible, eco-friendly, biodegradable, cheap, and non-toxic biopesticide which control the target pests. Thus, this re-view highlighted the extract, byproducts and roles of neem that can be used as potential biopesticide in agriculture.


Sign in / Sign up

Export Citation Format

Share Document