scholarly journals Male-biased Adult Production of the Striped Fruit Fly, Zeugodacus scutellata, by Feeding dsRNA Specific to Transformer-2

Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 211 ◽  
Author(s):  
Md. Abdullah Al Baki ◽  
Mohammad Vatanparast ◽  
Yonggyun Kim

Sterile insect release technique (SIT) is effective for eradicating quarantine insects including various tephritid fruit flies. When SIT is used for fruit flies, it is challenging to remove females from sterile males due to oviposition-associated piercing damage. This study developed a sex transition technique by feeding double-stranded RNA (dsRNA) specific to a sex-determining gene, Transformer-2 (Zs-Tra2) of the striped fruit fly, Zeugodacus scutellata. Zs-Tra2 is homologous to other fruit fly orthologs. It is highly expressed in female adults. RNA interference (RNAi) of Zs-Tra2 by injecting or feeding its specific dsRNA to larvae significantly increased male ratio. Recombinant Escherichia coli cells expressing dsRNA specific to Zs-Tra2 were prepared and used to feed larvae to suppress Zs-Tra2 gene expression levels. When these recombinant bacteria were fed to larvae during the entire feeding stage, the test population was significantly male-biased. Some females treated with such recombinant E. coli exhibited mosaic morphological characters such as the presence of male-specific abdominal setae in females. This study proposes a novel technique by feeding dsRNA specific to Transformer-2 to reduce female production during mass-rearing of tephritid males for SIT.

2019 ◽  
Vol 19 (S1) ◽  
Author(s):  
Deane N. Woruba ◽  
Jennifer L. Morrow ◽  
Olivia L. Reynolds ◽  
Toni A. Chapman ◽  
Damian P. Collins ◽  
...  

Abstract Background Mass-rearing, domestication and gamma irradiation of tephritid fruit flies used in sterile insect technique (SIT) programmes can negatively impact fly quality and performance. Symbiotic bacteria supplied as probiotics to mass-reared fruit flies may help to overcome some of these issues. However, the effects of tephritid ontogeny, sex, diet and irradiation on their microbiota are not well known. Results We have used next-generation sequencing to characterise the bacterial community composition and structure within Queensland fruit fly, Bactrocera tryoni (Froggatt), by generating 16S rRNA gene amplicon libraries derived from the guts of 58 individual teneral and mature, female and male, sterile and fertile adult flies reared on artificial larval diets in a laboratory or mass-rearing environment, and fed either a full adult diet (i.e. sugar and yeast hydrolysate) or a sugar only adult diet. Overall, the amplicon sequence read volume in tenerals was low and smaller than in mature adult flies. Operational taxonomic units (OTUs), belonging to the families Enterobacteriaceae (8 OTUs) and Acetobacteraceae (1 OTU) were most prevalent. Enterobacteriaceae dominated laboratory-reared tenerals from a colony fed a carrot-based larval diet, while Acetobacteraceae dominated mass-reared tenerals from a production facility colony fed a lucerne chaff based larval diet. As adult flies matured, Enterobacteriaceae became dominant irrespective of larval origin. The inclusion of yeast in the adult diet strengthened this shift away from Acetobacteraceae towards Enterobacteriaceae. Interestingly, irradiation increased 16S rRNA gene sequence read volume. Conclusions Our findings suggest that bacterial populations in fruit flies experience significant bottlenecks during metamorphosis. Gut bacteria in teneral flies were less abundant and less diverse, and impacted by colony origin. In contrast, mature adult flies had selectively increased abundances for some gut bacteria, or acquired these bacteria from the adult diet and environment. Furthermore, irradiation augmented bacterial abundance in mature flies. This implies that either some gut bacteria were compensating for damage caused by irradiation or irradiated flies had lost their ability to regulate bacterial load. Our findings suggest that the adult stage prior to sexual maturity may be ideal to target for probiotic manipulation of fly microbiota to increase fly performance in SIT programmes.


2019 ◽  
Vol 19 (S1) ◽  
Author(s):  
Ania T. Deutscher ◽  
Toni A. Chapman ◽  
Lucas A. Shuttleworth ◽  
Markus Riegler ◽  
Olivia L. Reynolds

Abstract Background The Sterile Insect Technique (SIT) is being applied for the management of economically important pest fruit flies (Diptera: Tephritidae) in a number of countries worldwide. The success and cost effectiveness of SIT depends upon the ability of mass-reared sterilized male insects to successfully copulate with conspecific wild fertile females when released in the field. Methods We conducted a critical analysis of the literature about the tephritid gut microbiome including the advancement of methods for the identification and characterization of microbiota, particularly next generation sequencing, the impacts of irradiation (to induce sterility of flies) and fruit fly rearing, and the use of probiotics to manipulate the fruit fly gut microbiota. Results Domestication, mass-rearing, irradiation and handling, as required in SIT, may change the structure of the fruit flies’ gut microbial community compared to that of wild flies under field conditions. Gut microbiota of tephritids are important in their hosts’ development, performance and physiology. Knowledge of how mass-rearing and associated changes of the microbial community impact the functional role of the bacteria and host biology is limited. Probiotics offer potential to encourage a gut microbial community that limits pathogens, and improves the quality of fruit flies. Conclusions Advances in technologies used to identify and characterize the gut microbiota will continue to expand our understanding of tephritid gut microbial diversity and community composition. Knowledge about the functions of gut microbes will increase through the use of gnotobiotic models, genome sequencing, metagenomics, metatranscriptomics, metabolomics and metaproteomics. The use of probiotics, or manipulation of the gut microbiota, offers significant opportunities to enhance the production of high quality, performing fruit flies in operational SIT programs.


Author(s):  
Murat Kütük ◽  
Ümit Katrancı

Fruit flies (Diptera: Tephritidae) are one of the most populous families of Diptera. In this study, it was aimed to determine the fauna of fruit flies in Ordu province. Adult specimens were collected from the research region in 2016-2017 years. All the specimens were identified by examining their morphological characters in Gaziantep University, Biology Department, Entomology Laboratory. As a result, thirty-three species belonging to 11 genera from three subfamilies were identified. All species are recorded for the first time from Ordu province. Material examined and wing photographs of the species are presented.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 131 ◽  
Author(s):  
Carlos Pascacio-Villafán ◽  
Larissa Guillén ◽  
Martín Aluja

The development of cost-effective diets for mass-rearing fruit flies (Diptera: Tephritidae) and their parasitoids in pest control programs based on the Sterile Insect Technique is a high priority worldwide. To this end, we tested carrageenan, agar, gelatin and two types of pregelatinized corn starches as gelling agents at varying percentages in a yeast-reduced liquid larval diet for rearing the Mexfly, Anastrepha ludens. Only diets with 0.234% (w/w) agar or 0.424% carrageenan were identified as diets with potential for mass-rearing A. ludens in terms of the number of pupae recovered from the diet, pupal weight, adult emergence, flight ability and diet cost. Comparative experiments showed that yeast-reduced agar and carrageenan gel diets produced heavier pupae and higher proportions of flying adults than the standard mass-rearing diet. The gel-agar and mass-rearing diets produced more pupae than the gel-carrageenan diet, but the latter produced more suitable larvae as hosts for rearing of Diachasmimorpha longicaudata (Hymenoptera: Braconidae) females, a widely used fruit fly biocontrol agent. Yeast-reduced agar and carrageenan gel diets could represent cost-effective fruit fly mass-rearing diets if a practical system for gel diet preparation and dispensation at fruit fly mass-rearing facilities is developed.


2019 ◽  
Vol 110 (1) ◽  
pp. 1-14 ◽  
Author(s):  
M.S. Noman ◽  
L. Liu ◽  
Z. Bai ◽  
Z. Li

AbstractTephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the generaAnastrepha, Bactrocera, Ceratitis,andRhagoletis.Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera ofKlebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia,andProvidenciaconstitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.


2013 ◽  
Vol 104 (2) ◽  
pp. 176-181 ◽  
Author(s):  
D. Rao ◽  
S. Aguilar-Argüello ◽  
P. Montoya ◽  
F. Díaz-Fleischer

AbstractFruit flies (Diptera: Tephritidae) are major pests worldwide. The sterile insect technique, where millions of flies are reared, sterilized by irradiation and then released, is one of the most successful and ecologically friendly methods of controlling populations of these pests. The mating behaviour of irradiated and non-irradiated flies has been compared in earlier studies, but there has been little attention paid to the anti-predator behaviour of mass-reared flies, especially with respect to wild flies. Tephritid flies perform a supination display to their jumping spider predators in order to deter attacks. In this study, we evaluated the possibility of using this display to determine the anti-predator capabilities of mass-reared irradiated, non-irradiated flies, and wild flies. We used an arena setup and observed bouts between jumping spiders (Phidippus audax Hentz) and male Mexican fruit flies (Anastrepha ludens Loew). We show that although all flies performed a supination display to their predator, wild flies were more likely to perform a display and were significantly more successful in avoiding attack than mass-reared flies. We suggest that this interaction can be used to develop a rapid realistic method of quality control in evaluating anti-predator abilities of mass-reared fruit flies.


Author(s):  
Eric S Tvedte ◽  
Mark Gasser ◽  
Benjamin C Sparklin ◽  
Jane Michalski ◽  
Carl E Hjelmen ◽  
...  

Abstract The newest generation of DNA sequencing technology is highlighted by the ability to generate sequence reads hundreds of kilobases in length. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have pioneered competitive long read platforms, with more recent work focused on improving sequencing throughput and per-base accuracy. We used whole-genome sequencing data produced by three PacBio protocols (Sequel II CLR, Sequel II HiFi, RS II) and two ONT protocols (Rapid Sequencing and Ligation Sequencing) to compare assemblies of the bacteria Escherichia coli and the fruit fly Drosophila ananassae. In both organisms tested, Sequel II assemblies had the highest consensus accuracy, even after accounting for differences in sequencing throughput. ONT and PacBio CLR had the longest reads sequenced compared to PacBio RS II and HiFi, and genome contiguity was highest when assembling these datasets. ONT Rapid Sequencing libraries had the fewest chimeric reads in addition to superior quantification of E. coli plasmids versus ligation-based libraries. The quality of assemblies can be enhanced by adopting hybrid approaches using Illumina libraries for bacterial genome assembly or polishing eukaryotic genome assemblies, and an ONT-Illumina hybrid approach would be more cost-effective for many users. Genome-wide DNA methylation could be detected using both technologies, however ONT libraries enabled the identification of a broader range of known E. coli methyltransferase recognition motifs in addition to undocumented D. ananassae motifs. The ideal choice of long read technology may depend on several factors including the question or hypothesis under examination. No single technology outperformed others in all metrics examined.


2021 ◽  
Vol 146 ◽  
pp. 105663
Author(s):  
Isabelle Grechi ◽  
Anne-Laure Preterre ◽  
Aude Caillat ◽  
Frédéric Chiroleu ◽  
Alain Ratnadass

Author(s):  
Peter A Follett ◽  
Fay E M Haynes ◽  
Bernard C Dominiak

Abstract Tephritid fruit flies are major economic pests for fruit production and are an impediment to international trade. Different host fruits are known to vary in their suitability for fruit flies to complete their life cycle. Currently, international regulatory standards that define the likely legal host status for tephritid fruit flies categorize fruits as a natural host, a conditional host, or a nonhost. For those fruits that are natural or conditional hosts, infestation rate can vary as a spectrum ranging from highly attractive fruits supporting large numbers of fruit flies to very poor hosts supporting low numbers. Here, we propose a Host Suitability Index (HSI), which divides the host status of natural and conditional hosts into five categories based on the log infestation rate (number of flies per kilogram of fruit) ranging from very poor (<0.1), poor (0.1–1.0), moderately good (1.0–10.0), good (10–100), and very good (>100). Infestation rates may be determined by field sampling or cage infestation studies. We illustrate the concept of this index using 21 papers that examine the host status of fruits in five species of polyphagous fruit flies in the Pacific region: Bactrocera tryoni Froggatt, Bactrocera dorsalis (Hendel), Bactrocera latifrons (Hendel), Zeugodacus cucurbitae (Coquillett), and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). This general-purpose index may be useful in developing systems approaches that rely on poor host status, for determining surveillance and detection protocols for potential incursions, and to guide the appropriate regulatory response during fruit fly outbreaks.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Michael D. Ormsby

AbstractTephritid fruit flies (Diptera; Tephritidae) represent a group of insects that include some of the most economically important pests in horticulture. Because of their economic importance, the financial impacts of an incursion of tephritid fruit flies into a new area can often result in restrictions to trade. The economic impacts of any trade restrictions imposed by importing countries are confounded by the current absence of consistent and accepted criteria for the strength and extent of any trade restrictions and declaring the end of an incursion. The author has developed models that can be used to establish criteria for the management of tephritid fruit fly outbreaks as outlined in international standards. A model enables criteria on when to recognise an incursion has occurred and establish export restrictions. Another model determines what area or radius an export restriction zone (ERZ) should cover. And a third model establishes criteria for the conditions required to enable an ERZ to be rescinded and the area’s pest free status reinstated. The models rely primarily on fruit fly biology and the effectiveness of surveillance trapping systems. The adoption of these proposed criteria internationally for establishing a control system and responding to fruit fly outbreaks would provide considerable economic benefits to international trade. Additionally, these criteria would enable countries to make more informed cost–benefit decisions on the level of investment in fruit fly control systems that better reflects the economic risks fruit flies represent to their economy.


Sign in / Sign up

Export Citation Format

Share Document