scholarly journals DDX6 Is Essential for Oocyte Development and Maturation in Locusta migratoria

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Junxiu Wang ◽  
Tingting Li ◽  
Sufang Deng ◽  
Enbo Ma ◽  
Jianzhen Zhang ◽  
...  

DEAD-box protein 6 (DDX6) is a member of the DDX RNA helicase family that exists in all eukaryotes. It has been extensively studied in yeast and mammals and has been shown to be involved in messenger ribonucleoprotein assembly, mRNA storage, and decay, as well as in miRNA-mediated gene silencing. DDX6 participates in many developmental processes but the biological function of DDX6 in insects has not yet been adequately addressed. Herein, we characterized the LmDDX6 gene that encodes the LmDDX6 protein in Locusta migratoria, a global, destructive pest. LmDDX6 possesses five motifs unique to the DDX6 subfamily. In the phylogenetic tree, LmDDX6 was closely related to its orthologs in Apis dorsata and Zootermopsis nevadensis. RT-qPCR data revealed high expression of LmDDX6 in the ovary, muscle, and fat body, with a declining trend in the ovary after adult ecdysis. LmDDX6 knockdown downregulated the expression levels of the juvenile hormone receptor Met, and genes encoding Met downstream targeted Grp78-1 and Grp78-2, reduced LmVg expression, and impaired ovary development and oocyte maturation. These results demonstrate that LmDDX6 plays an essential role in locust female reproduction and, thus, could be a novel target for locust biological control.

mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. e01966-18 ◽  
Author(s):  
Genis Andrés Castillo Villamizar ◽  
Heiko Nacke ◽  
Marc Boehning ◽  
Kristin Herz ◽  
Rolf Daniel

ABSTRACTPhosphatases, including phytases, play a major role in cell metabolism, phosphorus cycle, biotechnology, and pathogenic processes. Nevertheless, their discovery by functional metagenomics is challenging. Here, soil metagenomic libraries were successfully screened for genes encoding phosphatase activity. In this context, we report the largest number and diversity of phosphatase genes derived from functional metagenome analysis. Two of the detected gene products carry domains which have never been associated with phosphatase activity before. One of these domains, the SNARE-associated domain DedA, harbors a so-far-overlooked motif present in numerous bacterial SNARE-associated proteins. Our analysis revealed a previously unreported phytase activity of the alkaline phosphatase and sulfatase superfamily (cl23718) and of purple acid phosphatases from nonvegetal origin. This suggests that the classical concept comprising four classes of phytases should be modified and indicates high performance of our screening method for retrieving novel types of phosphatases/phytases hidden in metagenomes of complex environments.IMPORTANCEPhosphorus (P) is a key element involved in numerous cellular processes and essential to meet global food demand. Phosphatases play a major role in cell metabolism and contribute to control the release of P from phosphorylated organic compounds, including phytate. Apart from the relationship with pathogenesis and the enormous economic relevance, phosphatases/phytases are also important for reduction of phosphorus pollution. Almost all known functional phosphatases/phytases are derived from cultured individual microorganisms. We demonstrate here for the first time the potential of functional metagenomics to exploit the phosphatase/phytase pools hidden in environmental soil samples. The recovered diversity of phosphatases/phytases comprises new types and proteins exhibiting largely unknown characteristics, demonstrating the potential of the screening method for retrieving novel target enzymes. The insights gained into the unknown diversity of genes involved in the P cycle highlight the power of function-based metagenomic screening strategies to study Earth’s phosphatase pools.


2015 ◽  
Vol 112 (23) ◽  
pp. 7327-7332 ◽  
Author(s):  
Tomasz Kurcon ◽  
Zhongyin Liu ◽  
Anika V. Paradkar ◽  
Christopher A. Vaiana ◽  
Sujeethraj Koppolu ◽  
...  

Glycosylation, the most abundant posttranslational modification, holds an unprecedented capacity for altering biological function. Our ability to harness glycosylation as a means to control biological systems is hampered by our inability to pinpoint the specific glycans and corresponding biosynthetic enzymes underlying a biological process. Herein we identify glycosylation enzymes acting as regulatory elements within a pathway using microRNA (miRNA) as a proxy. Leveraging the target network of the miRNA-200 family (miR-200f), regulators of epithelial-to-mesenchymal transition (EMT), we pinpoint genes encoding multiple promesenchymal glycosylation enzymes (glycogenes). We focus on three enzymes, beta-1,3-glucosyltransferase (B3GLCT), beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5), and (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 (ST6GALNAC5), encoding glycans that are difficult to analyze by traditional methods. Silencing these glycogenes phenocopied the effect of miR-200f, inducing mesenchymal-to-epithelial transition. In addition, all three are up-regulated in TGF-β–induced EMT, suggesting tight integration within the EMT-signaling network. Our work indicates that miRNA can act as a relatively simple proxy to decrypt which glycogenes, including those encoding difficult-to-analyze structures (e.g., proteoglycans, glycolipids), are functionally important in a biological pathway, setting the stage for the rapid identification of glycosylation enzymes driving disease states.


2017 ◽  
Vol 114 (38) ◽  
pp. E8017-E8024 ◽  
Author(s):  
Lin Ling ◽  
Vladimir A. Kokoza ◽  
Changyu Zhang ◽  
Emre Aksoy ◽  
Alexander S. Raikhel

Hematophagous female mosquitoes transmit numerous devastating human diseases, including malaria, dengue fever, Zika virus, and others. Because of their obligatory requirement of a vertebrate blood meal for reproduction, these mosquitoes need a lot of energy; therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. Lipids are the major energy store providing the fuel required for host seeking and reproduction. They are essential components of the fat body, a metabolic tissue that is the insect analog of vertebrate liver and adipose tissue. In this study, we found that microRNA-277 (miR-277) plays an important role in regulating mosquito lipid metabolism. The genetic disruption of miR-277 using the CRISPR-Cas9 system led to failures in both lipid storage and ovary development. miR-277 mimic injection partially rescued these phenotypic manifestations. Examination of subcellular localization of FOXO protein via CRISPR-assisted, single-stranded oligodeoxynucleotide-mediated homology-directed repair revealed that insulin signaling is up-regulated in response to miR-277 depletion. In silico target prediction identified that insulin-like peptides 7 and 8 (ilp7andilp8) are putative targets of miR-277; RNA immunoprecipitation and a luciferase reporter assay confirmed thatilp7andilp8are direct targets of this miRNA. CRISPR-Cas9 depletion ofilp7andilp8led to metabolic and reproductive defects. These depletions identified differential actions of ILP7 and ILP8 in lipid homeostasis and ovarian development. Thus, miR-277 plays a critical role in mosquito lipid metabolism and reproduction by targetingilp7andilp8, and serves as a monitor to control ILP7 and ILP8 mRNA levels.


2020 ◽  
Vol 32 (11) ◽  
pp. 999
Author(s):  
Tao Tang ◽  
Qiyuan Lin ◽  
Yufeng Qin ◽  
Xinyu Liang ◽  
Yang Guo ◽  
...  

Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor-β (TGFB) superfamily that plays an essential role in mammalian ovary development, oocyte maturation and litter size. However, little is known regarding the expression pattern and biological function of BMP15 in male gonads. In this study we established, for the first time, a transgenic pig model with BMP15 constitutively knocked down by short hairpin (sh) RNA. The transgenic boars were fertile, but sperm viability was decreased. Further analysis of the TGFB/SMAD pathway and markers of reproductive capacity, namely androgen receptor and protamine 2, failed to identify any differentially expressed genes. These results indicate that, in the pig, the biological function of BMP15 in the development of male gonads is not as crucial as in ovary development. However, the role of BMP15 in sperm viability requires further investigation. This study provides new insights into the role of BMP15 in male pig reproduction.


1990 ◽  
Vol 269 (2) ◽  
pp. 309-313 ◽  
Author(s):  
G Gäde ◽  
H Wilps ◽  
R Kellner

A hypertrehalosaemic neuropeptide from the corpora cardiaca of the blowfly Phormia terraenovae has been isolated by reversed-phase h.p.l.c., and its primary structure was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The octapeptide has the sequence pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH2 and is clearly defined as a novel member of the RPCH/AKH (red-pigment-concentrating hormone/adipokinetic hormone) family of peptides. It is the first charged member of this family to be found. The synthetic peptide causes an increase in the haemolymph carbohydrate concentration in a dose-dependent fashion in blowflies and therefore is named ‘Phormia terraenovae hypertrehalosaemic hormone’ (Pht-HrTH). In addition, receptors in the fat-body of the American cockroach (Periplaneta americana) recognize the peptide, resulting in carbohydrate elevation in the blood. However, fat-body receptors of the migratory locust (Locusta migratoria) do not recognize this charged molecule, and thus no lipid mobilization is observed in this species.


2000 ◽  
Vol 30 (8-9) ◽  
pp. 829-837 ◽  
Author(s):  
Qili Feng ◽  
Subba R. Palli ◽  
Tim R. Ladd ◽  
Sardar S. Sohi ◽  
Arthur Retnakaran ◽  
...  

1952 ◽  
Vol 43 (1) ◽  
pp. 101-109 ◽  
Author(s):  
S. P. Cheu

The process of build-up of reserve substances in Locusta migratoria migratorioides (R. & F.) is very closely correlated with the feeding activity of the insect. Locusts attain their maximum body weight in the initial period before maturation. In the females there is one minor build-up period after each laying.As measured by the weight of faeces produced, the gregaria female consumes more food than the solitaria during development. It also has a lower rate of increase in body weight, maturation and oviposition.Locusts start to build up fat soon after the final ecdysis. The fat content reaches its maximum in the early part of adult life, and then begins to decline in both sexes of both phases.By far the greater part of the fat reserve thus built up in the gregaria female is used up before oviposition, and only a small amount goes to the making of the first egg-pod. The fat of the subsequent egg-pods (of both phases) is derived from the fat built up each time after a new egg-pod is laid.The solitaria females may mature their eggs at various stages in the development of the fat body. Those which have a longer pre-maturation period have a higher fat content.


Sign in / Sign up

Export Citation Format

Share Document