scholarly journals Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 224
Author(s):  
Patrick W. Maes ◽  
Amy S. Floyd ◽  
Brendon M. Mott ◽  
Kirk E. Anderson

Honey bee overwintering health is essential to meet the demands of spring pollination. Managed honey bee colonies are overwintered in a variety of climates, and increasing rates of winter colony loss have prompted investigations into overwintering management, including indoor climate controlled overwintering. Central to colony health, the worker hindgut gut microbiota has been largely ignored in this context. We sequenced the hindgut microbiota of overwintering workers from both a warm southern climate and controlled indoor cold climate. Congruently, we sampled a cohort of known chronological age to estimate worker longevity in southern climates, and assess age-associated changes in the core hindgut microbiota. We found that worker longevity over winter in southern climates was much lower than that recorded for northern climates. Workers showed decreased bacterial and fungal load with age, but the relative structure of the core hindgut microbiome remained stable. Compared to cold indoor wintering, collective microbiota changes in the southern outdoor climate suggest compromised host physiology. Fungal abundance increased by two orders of magnitude in southern climate hindguts and was positively correlated with non-core, likely opportunistic bacteria. Our results contribute to understanding overwintering honey bee biology and microbial ecology and provide insight into overwintering strategies.

2020 ◽  
Vol 7 (3) ◽  
pp. 142
Author(s):  
Julia Dittes ◽  
Marc O. Schäfer ◽  
Heike Aupperle-Lellbach ◽  
Christoph K. W. Mülling ◽  
Ilka U. Emmerich

Chronic Bee Paralysis Virus (CBPV), a widespread honey bee RNA virus, causes massive worker bee losses, mostly in strong colonies. Two different syndromes, with paralysis, ataxia and flight incapacity on one hand and black hairless individuals with shortened abdomens on the other, can affect a colony simultaneously. This case report presents two Apis mellifera carnica colonies with symptoms of paralysis and hairless black syndrome in 2019. Via RT-PCR, a highly positive result for CBPV was detected in both samples. Further problems, such as a Nosema infection and Varroa infestation, were present in these colonies. Therapy methods were applied to colony 1 comprising queen replacement, shook swarm method and Varroa control, whereas colony 2 was asphyxiated after queen loss and colony weakening. After therapy, colony 1 was wintered without symptoms. Beekeeping and sanitary measures can save a CBPV-infected colony, while further complications result in total colony loss.


2018 ◽  
Vol 62 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Mayra C. García-Anaya ◽  
Alejandro Romo-Chacón ◽  
Alma I. Sáenz-Mendoza ◽  
Gerardo Pérez-Ordoñez ◽  
Carlos H. Acosta-Muñiz

Abstract The recent alarming loss of honey bee colonies around the world is believed to be related to the presence of viruses. The aim of this study was to detect two major viral diseases, Apis mellifera Filamentous virus (AmFV) and Israeli Acute Paralysis Virus (IAPV) using Reverse Transcription - Polymerase Chain Reaction RT-PCR, in honey bees in Mexico. Adult and larvae honey bee samples were collected from asymptomatic colonies of six major beekeeping regions in the state of Chihuahua, Mexico. Both viruses were detected in both developmental stages of honey bees, IAPV at a higher prevalence (23.5%) as compared to AmFV, only in 0.9% of samples. However, this is the first report on AmFV infection in Mexican apiaries. Further studies are required to understand the AmFV and IAPV impact on colony loss in Mexico and to develop strategies for enhancing the control of viral diseases.


Author(s):  
R.A. Ilyasov ◽  
◽  
A.G. Nikolenko ◽  
H.W. Kwon ◽  
◽  
...  

Genetic improvement of honey bee populations based on molecular genetics features is faster and precision in comparison with morphometry and behavior-based methods. We developed the method based on nine nuclear microsatellite loci that allow a selection of most adaptive honey bee colonies by genetically defined features. Our study the heterozygosity of the dark European bee A. m. mellifera inhabiting the extremely cold region of the Ural Mountains to provide a marker-assisted selection for revealing the high adapted to extremely cold climate honey bee population can be applied for markerassisted selection of honey bees adapted to beekeeping in extremal climatic conditions.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Catherine M. Mueller ◽  
Cameron Jack ◽  
Ashley N. Mortensen ◽  
Jamie D. Ellis

European foulbrood is a bacterial disease that affects Western honey bee larvae. It is a concern to beekeepers everywhere, though it is less serious than American foulbrood because it does not form spores, which means that it can be treated. This 7-page fact sheet written by Catherine M. Mueller, Cameron J. Jack, Ashley N. Mortensen, and Jamie Ellis and published by the UF/IFAS Entomology and Nematology Department describes the disease and explains how to identify it to help beekeepers manage their colonies effectively and prevent the spread of both American and European foulbrood.https://edis.ifas.ufl.edu/in1272


2021 ◽  
pp. 116566
Author(s):  
Kirsten S. Traynor ◽  
Simone Tosi ◽  
Karen Rennich ◽  
Nathalie Steinhauer ◽  
Eva Forsgren ◽  
...  
Keyword(s):  
The Usa ◽  

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 641
Author(s):  
Julio Chávez-Galarza ◽  
Ruth López-Montañez ◽  
Alejandra Jiménez ◽  
Rubén Ferro-Mauricio ◽  
Juan Oré ◽  
...  

Mitochondrial DNA variations of Peruvian honey bee populations were surveyed by using the tRNAleu-cox2 intergenic region. Only two studies have characterized these populations, indicating the presence of Africanized honey bee colonies in different regions of Peru and varied levels of Africanization, but the current status of its genetic diversity is unknown. A total of 512 honey bee colonies were sampled from three regions to characterize them. Our results revealed the presence of European and African haplotypes: the African haplotypes identified belong to sub-lineage AI (13) and sub-lineage AIII (03), and the European haplotypes to lineages C (06) and M (02). Of 24 haplotypes identified, 15 new sequences are reported here (11 sub-lineage AI, 2 sub-lineage AIII, and 2 lineage M). Peruvian honey bee populations presented a higher proportion from African than European haplotypes. High proportions of African haplotype were reported for Piura and Junín, unlike Lima, which showed more European haplotypes from lineage C. Few colonies belonging to lineage M would represent accidental purchase or traces of the introduction into Peru in the 19th century.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William G. Meikle ◽  
John J. Adamczyk ◽  
Milagra Weiss ◽  
Janie Ross ◽  
Chris Werle ◽  
...  

AbstractThe effects of agricultural pesticide exposure upon honey bee colonies is of increasing interest to beekeepers and researchers, and the impact of neonicotinoid pesticides in particular has come under intense scrutiny. To explore potential colony-level effects of a neonicotinoid pesticide at field-relevant concentrations, honey bee colonies were fed 5- and 20-ppb concentrations of clothianidin in sugar syrup while control colonies were fed unadulterated syrup. Two experiments were conducted in successive years at the same site in southern Arizona, and one in the high rainfall environment of Mississippi. Across all three experiments, adult bee masses were about 21% lower among colonies fed 20-ppb clothianidin than the untreated control group, but no effects of treatment on brood production were observed. Average daily hive weight losses per day in the 5-ppb clothianidin colonies were about 39% lower post-treatment than in the 20-ppb clothianidin colonies, indicating lower consumption and/or better foraging, but the dry weights of newly-emerged adult bees were on average 6–7% lower in the 5-ppb group compared to the other groups, suggesting a nutritional problem in the 5-ppb group. Internal hive CO2 concentration was higher on average in colonies fed 20-ppb clothianidin, which could have resulted from greater CO2 production and/or reduced ventilating activity. Hive temperature average and daily variability were not affected by clothianidin exposure but did differ significantly among trials. Clothianidin was found to be, like imidacloprid, highly stable in honey in the hive environment over several months.


Author(s):  
Belén Branchiccela ◽  
Loreley Castelli ◽  
Sebastián Díaz-Cetti ◽  
Ciro Invernizzi ◽  
Yamandú Mendoza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document