scholarly journals Efficacy of Anystis baccarum against Foxglove Aphids, Aulacorthum solani, in Laboratory and Small-Scale Greenhouse Trials

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 709
Author(s):  
Taro Saito ◽  
Michael Brownbridge

A generalist predatory mite, Anystis baccarum (L.), has been identified as a key predator of small, soft-bodied pest species in various agroecosystems around the world. The foxglove aphid Aulacorthum solani (Keltenbach) is a new problematic pest in Canadian greenhouses. Laboratory colonies of A. baccarum were established and its predatory efficacy against A. solani was assessed. In laboratory trials, A. baccarum ate approximately one adult aphid or seven first instar aphids in 24 h. In a greenhouse bench trial on sweet peppers with the free-flying aphid parasitoid, Aphidius ervi Haliday, the population dynamics of A. solani in the presence or absence of A. baccarum was evaluated. Although the parasitoid alone successfully eradicated A. solani, when A. baccarum were present on the plants, the aphid population was eradicated more rapidly. Fruit yield was also 15% higher from plants where A. baccarum was released than the control (without A. baccarum). Furthermore, plants were naturally infested by Frankliniella occidentalis (Pergande) during the trial, which caused visible feeding damage to the fruits. Anystis baccarum also predates on thrips and thrips’ feeding damage to the fruits was reduced on plants where A. baccarum was released. Anystis baccarum was able to establish in sweet peppers and was determined to be complementary to the current practice of using A. ervi for the biological control of A. solani.

2012 ◽  
Vol 144 (4) ◽  
pp. 589-598 ◽  
Author(s):  
David R. Gillespie ◽  
Susanna Acheampong

AbstractWe studied the dropping behaviour of the foxglove aphid, Aulacorthum solani (Kaltenbach) (Hemiptera: Aphididae), in response to disturbance by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae). We banded plant stems with sticky tape to prevent aphids from returning to the plants to determine if these would serve as an integrated pest management strategy for A. solani. Stem banding prevented A. solani that had dropped from returning to the plant; but the mortality associated with banding was not necessarily complementary to biological control by A. ervi. Up to 80% of aphids dropped in response to foraging by A. ervi, and thus could be killed on sticky stem bands. The fraction of aphids that dropped to the ground also contained as much as 90% of the parasitoid's offspring. Overall, mortality of aphids on sticky stem bands was not compatible with parasitoids. Although numbers of aphids declined more rapidly in the first 2 weeks of the trial in the presence of stem bands and parasitoids than in the presence of parasitoids alone, the numbers of aphids were identical in the two treatments from the 3rd week onward. Mortality on the stem bands replaced mortality from parasitoids, and reduced recruitment of parasitoids.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249893
Author(s):  
Estelle Postic ◽  
Yannick Outreman ◽  
Stéphane Derocles ◽  
Caroline Granado ◽  
Anne Le Ralec

Due to their ability to parasitize various insect species, generalist parasitoids are widely used as biological control agents. They can be mass-reared and released in agroecosystems to control several pest species in various crops. However, the existence of genetic differentiation among populations of generalist parasitoid species is increasingly recognized and this can be associated with an adaptation to local conditions or to a reduced range of host species. Moreover, constraints of mass-rearing conditions can alter genetic variation within parasitoid populations released. These features could be associated with a reduced efficiency of the control of targeted pest species. Here, we focused on strawberry greenhouses where the control of aphids with the generalist parasitoid Aphidius ervi appears to be inefficient. We investigated whether this inefficiency may have both genetic and ecological bases comparing wild and commercial populations of A. ervi. We used two complementary genetic approaches: one based on the mitochondrial marker COI and one based on microsatellite markers. COI analysis showed a genetic differentiation within the A. ervi species, but the structure was neither associated with the commercial/wild status nor with host species factors. On the other hand, using microsatellite markers, we showed a genetic differentiation between commercial and wild A. ervi populations associated with a loss of genetic diversity within the mass-reared populations. Our ecological genetics study may potentially explain the weak efficiency of biological control of aphids in protected strawberry crops and enable to provide some insights to improve biological control.


2013 ◽  
Vol 26 (10) ◽  
pp. 1249-1256 ◽  
Author(s):  
Donatella Battaglia ◽  
Simone Bossi ◽  
Pasquale Cascone ◽  
Maria Cristina Digilio ◽  
Juliana Duran Prieto ◽  
...  

Below ground and above ground plant–insect–microorganism interactions are complex and regulate most of the developmental responses of important crop plants such as tomato. We investigated the influence of root colonization by a nonmycorrhizal plant-growth-promoting fungus on direct and indirect defenses of tomato plant against aphids. The multitrophic system included the plant Solanum lycopersicum (‘San Marzano nano’), the root-associated biocontrol fungus Trichoderma longibrachiatum strain MK1, the aphid Macrosiphum euphorbiae (a tomato pest), the aphid parasitoid Aphidius ervi, and the aphid predator Macrolophus pygmaeus. Laboratory bioassays were performed to assess the effect of T. longibrachiatum MK1, interacting with the tomato plant, on quantity and quality of volatile organic compounds (VOC) released by tomato plant, aphid development and reproduction, parasitoid behavior, and predator behavior and development. When compared with the uncolonized controls, plants whose roots were colonized by T. longibrachiatum MK1 showed quantitative differences in the release of specific VOC, better aphid population growth indices, a higher attractiveness toward the aphid parasitoid and the aphid predator, and a quicker development of aphid predator. These findings support the development of novel strategies of integrated control of aphid pests. The species-specific or strain-specific characteristics of these below ground–above ground interactions remain to be assessed.


Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1507-1507 ◽  
Author(s):  
J. M. Crosslin ◽  
L. L. Hamlin

In April and May 2010, leaves on approximately one-half of 200 potato (Solanum tuberosum L. cv. Atlantic) plants, 20 to 25 cm high, grown from prenuclear minitubers in greenhouses located at the USDA-ARS facility in Prosser, WA exhibited necrotic spots similar to those produced by the early blight pathogen, Alternaria solani. Fungicide sprays did not reduce incidence of the symptoms. Observations associated the symptoms with thrips feeding damage so plants were tested for Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) with ImmunoStrips from Agdia, Inc (Elkhart, IN). Three of three, two of two, and two of two symptomatic plants from three greenhouses were positive for INSV and negative for TSWV. Two symptomless plants tested negative. Four of four symptomatic and zero of two symptomless plants were positive by reverse transcription (RT)-PCR with INSV specific primers (forward: 5′ TAACACAACACAAAGCAAACC 3′ and reverse: 5′ CCAAATACTACTTTAACCGCA 3′) (4). The 906-bp amplicon from one sample was cloned and three clones were sequenced. The three clones were 99.7% identical, and BLAST analysis of the consensus sequence (GenBank Accession No. HM802206) showed 99% identity to INSV accessions D00914 and X66972, and 98% identity to other INSV isolates. The isolate, designated INSV pot 1, was mechanically inoculated to one plant of potato cv. GemStar and produced local, spreading necrotic lesions. The virus did not go systemic, as determined by RT-PCR of upper leaves 30 days after inoculation. The local necrotic lesions on GemStar were positive for INSV by ImmunoStrips and RT-PCR. The original source of the INSV inoculum is unknown. However, hairy nightshade (Solanum sarrachoides Sendtn.) and plantain (Plantago major L.) weeds in an ornamental planting near one of the affected greenhouses tested positive for INSV by ImmunoStrips. The nightshade showed obvious thrips feeding damage but no obvious virus symptoms while the plantain showed less thrips feeding damage but distinct necrotic rings. Subsequently, two of two symptomatic potato plants of cv. Desiree in another greenhouse near the initial site tested INSV positive with the ImmunoStrips. In addition to the necrotic lesions on leaves observed in cv. Atlantic, these plants also showed necrosis of petioles and stems. INSV is transmitted by a number of species of thrips, but the western flower thrips (Frankliniella occidentalis Perg.) is considered the most important under greenhouse conditions. The species of thrips in the affected greenhouses was not determined before all materials were discarded. Both INSV and the thrips vector have large host ranges including many crops and weeds, and have become increasingly important in recent years (1,2). INSV was reported on greenhouse-grown potatoes in New York in 2005 (3). These findings indicate INSV can be a major problem in greenhouse potatoes, whether for research purposes or production of virus-free minitubers destined for field plantings. References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) R. A. Naidu et al. Online publication. doi:10.1094/PHP-2005-0727-01-HN, Plant Health Progress, 2005. (3) K. L. Perry et al. Plant Dis. 89:340, 2005. (4) K. Tanina et al. Jpn. J. Phytopathol. 67:42, 2001. ERRATUM: A correction was made to this Disease Note on September 7, 2012. The forward and reverse INSV specific primer sequences were corrected.


1981 ◽  
Vol 71 (4) ◽  
pp. 607-616 ◽  
Author(s):  
A. R. Jutsum ◽  
J. M. Cherrett

AbstractA new easily-produced cheap compound for use as a bait matrix is described. The light-weight matrix of polyurethane is prepared from dense precursors into which suitable attractants and toxicants can be incorporated for the pest species in question. It has a high bait effectiveness/weight ratio, and so is very suitable for aerial application as large economically viable payloads can be achieved. When tested both in the laboratory and in the field on a small scale against the leaf-cutting ant Acromyrmex octospinosus (Reich), the bait was highly acceptable to the ants. Some formulations, especially those coated with mirex gave excellent control of ants in the field in Trinidad, killing all occupants of nests within four days of baiting. The bait exhibited good weathering properties, was resistant to fungus attack, and allowed the slow release of pheromones. It was much cheaper than the citrus pulp baits normally used in Trinidad.


1991 ◽  
Vol 123 (6) ◽  
pp. 1229-1237 ◽  
Author(s):  
B. Bai

AbstractConspecific host discrimination and larval competition in two aphid parasitoid species were studied in the laboratory using the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), as a host. Aphidius ervi Haliday (Hymenoptera: Aphidiidae) used internal host cues to discriminate between unparasitized and conspecific parasitized hosts. When only parasitized hosts were available, females oviposited into recently parasitized ones where their progeny had a good chance to survive, but rejected those parasitized ≥24 h earlier where their offspring normally died. Competitions occurred only after both eggs had hatched. Larvae eliminated supernumeraries by means of physical combat and physiological suppression. In Aphelinus asychis Walker (Hymenoptera: Aphelinidae), factors, or changes in host internal condition, associated with hatching of the first egg resulted in suppression of conspecific competitors which could be in either larval or egg stage. The older larvae always won competitions through physiological means. A wasp’s oviposition decision is shown to be influenced by the probability of its progeny’s survival. Species that have different reproductive strategies may respond differently to identical host conditions.


2016 ◽  
Vol 283 (1825) ◽  
pp. 20160042 ◽  
Author(s):  
Miranda M. A. Whitten ◽  
Paul D. Facey ◽  
Ricardo Del Sol ◽  
Lorena T. Fernández-Martínez ◽  
Meirwyn C. Evans ◽  
...  

RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus , and a short-lived globally invasive polyphagous agricultural pest, western flower thrips ( Frankliniella occidentalis ). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.


Sign in / Sign up

Export Citation Format

Share Document