scholarly journals Diel and Circadian Patterns of Locomotor Activity in the Adults of Diamondback Moth (Plutella xylostella)

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 727
Author(s):  
Danfeng Wang ◽  
Guang Yang ◽  
Wenfeng Chen

The Diamondback Moth (Plutella xylostella) is a highly destructive lepidopteran pest of cruciferous crops. However, there still is relatively little known about the locomotor activities of diel and the circadian patterns in P. xylostella. Here, we present an analysis of the diel locomotion of P. xylostella under several laboratory settings. We established a system for measuring the individual locomotor activities of P. xylostella and found that both males and females showed a nocturnal pattern of activity under 26 or 20 °C LD conditions, with activity peaking immediately after lights off and quickly declining after lights on. In addition, we showed that it is difficult to assess the free-running circadian rhythms of P. xylostella under 26 °C DD conditions. However, we found that males showed a higher power, rhythm index (RI) and rhythmic ratio than females under 20 °C DD conditions, which indicated that males in low-temperature conditions are much more suitable to study the free-running circadian rhythms of P. xylostella. The findings of this study will help us to have a better understanding of the diel activity of P. xylostella and may provide a foundation for the development of an effective pest management strategy.

2021 ◽  
Author(s):  
Viacheslav V. Krylov ◽  
Evgeny I. Izvekov ◽  
Vera V. Pavlova ◽  
Natalia A. Pankova ◽  
Elena A. Osipova

AbstractThe locomotor activity of zebrafish (Danio rerio) has a pronounced, well-studied circadian rhythm. Under constant illumination, the period of free-running locomotor activity in this species usually becomes less than 24 hours. To evaluate the entraining capabilities of slow magnetic variations, zebrafish locomotor activity was evaluated at constant illumination and fluctuating magnetic field with a period of 26.8 hours. Lomb-Scargle periodogram revealed significant free-running rhythms of locomotor activity and related behavioral endpoints with a period close to 27 hours. Obtained results reveal the potential of slow magnetic fluctuations for entrainment of the circadian rhythms in zebrafish. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.


2017 ◽  
Vol 43 (2) ◽  
pp. 195
Author(s):  
Robson Thomaz Thuler ◽  
Fernando Henrique Iost Filho ◽  
Hamilton César De Oliveira Charlo ◽  
Sergio Antônio De Bortoli

Plant induced resistance is a tool for integrated pest management, aimed at increasing plant defense against stress, which is compatible with other techniques. Rhizobacteria act in the plant through metabolic changes and may have direct effects on plant-feeding insects. The objective of this study was to determine the effects of cabbage plants inoculated with rhizobacteria on the biology and behavior of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Cabbage seeds inoculated with 12 rhizobacteria strains were sowed in polystyrene trays and later transplanted into the greenhouse. The cabbage plants with sufficient size to support stress were then infested with diamondback moth caterpillars. Later, healthy leaves suffering injuries were collected and taken to the laboratory to feed P. xylostella second instar caterpillars that were evaluated for larval and pupal viability and duration, pupal weight, and sex ratio. The reduction of leaf area was then calculated as a measure of the amount of larval feeding. Non-preference for feeding and oviposition assays were also performed, by comparing the control treatment and plants inoculated with different rhizobacterial strains. Plants inoculated with the strains EN4 of Kluyvera ascorbata and HPF14 of Bacillus thuringiensis negatively affected the biological characteristics of P. xylostella when such traits were evaluated together, without directly affecting the insect behavior.


2021 ◽  
Author(s):  
Yaohui Wang ◽  
Xia Xu ◽  
Xi’en Chen ◽  
Xiaowei Li ◽  
Honglun Bi ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 109
Author(s):  
Norazila Yusoff ◽  
Idris Abd Ghani ◽  
Nurul Wahida Othman ◽  
Wan Mohd Aizat ◽  
Maizom Hassan

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cruciferous vegetables worldwide. In this study, we evaluated the properties of selected farnesyl derivative compounds against P. xylostella. The toxicity and sublethal concentration (LC50) of farnesyl acetate, farnesyl acetone, farnesyl bromide, farnesyl chloride, and hexahydrofarnesyl acetone were investigated for 96 h. The leaf-dip bioassays showed that farnesyl acetate had a high level of toxicity against P. xylostella compared to other tested farnesyl derivatives. The LC50 value was 56.41 mg/L on the second-instar larvae of P. xylostella. Then, the sublethal effects of farnesyl acetate on biological parameters of P. xylostella were assessed. Compared to the control group, the sublethal concentration of farnesyl acetate decreased pupation and emergence rates, pupal weight, fecundity, egg hatching rate, female ratio, and oviposition period. Furthermore, the developmental time of P. xylostella was extended after being exposed to farnesyl acetate. Moreover, the application of farnesyl acetate on P. xylostella induced morphogenetic abnormalities in larval–pupal intermediates, adults that emerged with twisted wings, or complete adults that could not emerge from the cocoon. These results suggested that farnesyl acetate was highly effective against P. xylostella. The sublethal concentration of farnesyl acetate could reduce the population of P. xylostella by increasing abnormal pupal and adults, and by delaying its development period.


2021 ◽  
pp. 074873042199994
Author(s):  
Rosa Eskandari ◽  
Lalanthi Ratnayake ◽  
Patricia L. Lakin-Thomas

Molecular models for the endogenous oscillators that drive circadian rhythms in eukaryotes center on rhythmic transcription/translation of a small number of “clock genes.” Although substantial evidence supports the concept that negative and positive transcription/translation feedback loops (TTFLs) are responsible for regulating the expression of these clock genes, certain rhythms in the filamentous fungus Neurospora crassa continue even when clock genes ( frq, wc-1, and wc-2) are not rhythmically expressed. Identification of the rhythmic processes operating outside of the TTFL has been a major unresolved area in circadian biology. Our lab previously identified a mutation ( vta) that abolishes FRQ-less rhythmicity of the conidiation rhythm and also affects rhythmicity when FRQ is functional. Further studies identified the vta gene product as a component of the TOR (Target of Rapamycin) nutrient-sensing pathway that is conserved in eukaryotes. We now report the discovery of TOR pathway components including GTR2 (homologous to the yeast protein Gtr2, and RAG C/D in mammals) as binding partners of VTA through co-immunoprecipitation (IP) and mass spectrometry analysis using a VTA-FLAG strain. Reciprocal IP with GTR2-FLAG found VTA as a binding partner. A Δ gtr2 strain was deficient in growth responses to amino acids. Free-running conidiation rhythms in a FRQ-less strain were abolished in Δ gtr2. Entrainment of a FRQ-less strain to cycles of heat pulses demonstrated that Δ gtr2 is defective in entrainment. In all of these assays, Δ gtr2 is similar to Δ vta. In addition, expression of GTR2 protein was found to be rhythmic across two circadian cycles, and functional VTA was required for GTR2 rhythmicity. FRQ protein exhibited the expected rhythm in the presence of GTR2 but the rhythmic level of FRQ dampened in the absence of GTR2. These results establish association of VTA with GTR2, and their role in maintaining functional circadian rhythms through the TOR pathway.


2016 ◽  
Vol 132 ◽  
pp. 38-46 ◽  
Author(s):  
Shuzhen Zhang ◽  
Xiaolei Zhang ◽  
Jun Shen ◽  
Kaikai Mao ◽  
Hong You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document