scholarly journals The Effect of Mirid Density on Volatile-Mediated Foraging Behaviour of Apolygus lucorum and Peristenus spretus

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 870
Author(s):  
Han Chen ◽  
Honghua Su ◽  
Shuai Zhang ◽  
Tianxing Jing ◽  
Zhe Liu ◽  
...  

Plants would release herbivore-induced plant volatiles (HIPVs) to repel herbivores and attract natural enemies after being damaged by herbivores. In this study, after cotton plants were damaged by different densities of Apolygus lucorum, the behavioral responses of A. lucorum and Peristenus spretus to cotton plants volatiles were evaluated, and the quality and quantity of volatiles from cotton plants were analyzed. Only when cotton plants were damaged by four bugs did both A. lucorum and P. spretus show an obvious response to damaged cotton plants, which indicates that cotton defense is correlated with pest density. The collection and analysis of volatiles reveals that the increase in pest density results in the emission of new compounds and an increase in the total number of volatiles with an alteration in proportions among the compounds in the blend. These changes in volatile profiles might provide wasps and mirids with specific information on host habitat quality and thus could explain the behavioral responses of parasitoids and pests.

2000 ◽  
Vol 29 (2) ◽  
pp. 189-203 ◽  
Author(s):  
Consuelo M. De Moraes ◽  
W. J. Lewis ◽  
James H. Tumlinson

The demonstration that parasitoids are attracted to volatile compounds released by plants in response to herbivore feeding has generated a great deal of interest over the past ten years. The release of volatile signals by plants occurs not only in response to tissue damage but is also specifically initiated by exposure to herbivore salivary secretions. Although some volatile compounds are stored in plant tissues and immediately released when damage occurs, others are induced by herbivore feeding and released not only from damaged tissue but also from undamaged leaves. Thus, damage localized to only a few leaves results in a systemic response and the release of volatiles from the entire plant. New evidence suggests that, in addition to being highly detectable and reliable indicators of herbivore presence, herbivore-induced plant volatiles may convey herbivore-specific information that allows parasitoids to discriminate even closely-related herbivore species at long range. Here we give an overview of the recent developments in the investigation of plant-parasitoid interactions.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 408
Author(s):  
Yu Cao ◽  
Jie Wang ◽  
Giacinto Salvatore Germinara ◽  
Lijuan Wang ◽  
Hong Yang ◽  
...  

Thrips hawaiiensis is a common thrips pest of various plant flowers with host preference. Plant volatiles provide important information for host-searching in insects. We examined the behavioral responses of T. hawaiiensis adults to the floral volatiles of Gardenia jasminoides Ellis, Gerbera jamesonii Bolus, Paeonia lactiflora Pallas, and Rosa chinensis Jacq. in a Y-tube olfactometer. T. hawaiiensis adults showed significantly different preferences to these four-flower plants, with the ranking of G. jasminoides > G. jamesonii > P. lactiflora ≥ R. chinensis. Further, 29 components were identified in the volatile profiles of G. jasminoides, and (Z)-3-hexenyl tiglate (14.38 %), linalool (27.45 %), and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (24.67 %) were the most abundant. Six-arm olfactometer bioassays showed that T. hawaiiensis had significant positive responses to (Z)-3-hexenyl tiglate, linalool, and (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene tested at various concentrations, with the most attractive ones being 10−3 μL/μL, 10−2 μL/μL and 100 μg/μL for each compound, respectively. In pairing of these three compounds at their optimal concentrations, T. hawaiiensis showed the preference ranking of (Z)-3-hexenyl tiglate > linalool > (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene. Large numbers of T. hawaiiensis have been observed on G. jasminoides flowers in the field, which might be caused by the high attraction of this pest to G. jasminoides floral volatiles shown in the present study. Our findings shed light on the olfactory cues routing host plant searching behavior in T. hawaiiensis, providing important information on how T. hawaiiensis targets particular host plants. The high attractiveness of the main compounds (e.g., linalool, (E3,E7)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, particular (Z)-3-hexenyl tiglate) identified from volatiles of G. jasminoides flowers may be exploited further to develop novel monitoring and control tools (e.g., lure and kill strategies) against this flower-inhabiting thrips pest.


1999 ◽  
Vol 34 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Consuelo M. De Moraes ◽  
Mark C. Mescher

Tritrophic plant-herbivore-parasitoid interactions are highly complex and often tightly interwoven. Plant-parasitoid interactions are a fundamental component of such systems with profound implications both for parasitoid foraging efficiency and plant defense. Chemical, plant-based cues are the dominant cues used by parasitoids in long-range foraging to locate cryptic, highly-dispersed hosts within a complex physical and chemical environment. It is well documented that volatile chemical signals produced and released by plants specifically in response to herbivore feeding play an important role in parasitoid foraging. New evidence suggests that, in addition to being highly detectable and reliable indicators of herbivore presence, herbivore-induced plant volatiles may convey herbivore-specific information that allows parasitoids to discriminate even closely-related herbivore species at long range.


2019 ◽  
Vol 135 ◽  
pp. 41-47 ◽  
Author(s):  
Chunli Xiu ◽  
Weijian Dai ◽  
Hongsheng Pan ◽  
Wei Zhang ◽  
Shuping Luo ◽  
...  

2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


Sign in / Sign up

Export Citation Format

Share Document