scholarly journals Characterization of Irradiated Boron, Carbon-Enriched and Gallium Si-on-Si Wafer Low Gain Avalanche Detectors

Instruments ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Lucía Castillo García ◽  
Evangelos Leonidas Gkougkousis ◽  
Chiara Grieco ◽  
Sebastian Grinstein

Low Gain Avalanche Detectors (LGADs) are n-on-p silicon sensors with an extra doped p-layer below the n-p junction which provides signal amplification. The moderate gain of these sensors, together with the relatively thin active region, provides excellent timing performance for Minimum Ionizing Particles (MIPs). To mitigate the effect of pile-up during the High-Luminosity Large Hadron Collider (HL-LHC) era, both ATLAS and CMS experiments will install new detectors, the High-Granularity Timing Detector (HGTD) and the End-Cap Timing Layer (ETL), that rely on the LGAD technology. A full characterization of LGAD sensors fabricated by Centro Nacional de Microelectrónica (CNM), before and after neutron irradiation up to 1015 neq/cm2, is presented. Sensors produced in 100 mm Si-on-Si wafers and doped with boron and gallium, and also enriched with carbon, are studied. The results include their electrical characterization (I-V, C-V), bias voltage stability and performance studies with the Transient Current Technique (TCT) and a Sr-90 radioactive source setup.

2018 ◽  
Vol 136 (6) ◽  
pp. 47040 ◽  
Author(s):  
Razieh Hashemi Sanatgar ◽  
Aurélie Cayla ◽  
Christine Campagne ◽  
Vincent Nierstrasz

2011 ◽  
Vol 43 (2) ◽  
pp. 193-204 ◽  
Author(s):  
J. Purenovic ◽  
V.V. Mitic ◽  
Lj. Kocic ◽  
V.B. Pavlovic ◽  
V. Paunovic ◽  
...  

The addition of Mg2(NO)3 and some active additives, composed of Al salts, to the mixtures of kaolinite and bentonite can provide clay compositions which, after sintering at high temperatures, produce very porous ceramics with microcrystalline and amorphous regions and highly developed metalized surfaces (mainly with magnesium surplus). Characterization of sintered samples was done before and after treatment in ?synthetic water?, i.e. in aqueous solution of arsenic-salt. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. Electrical characterization was estimated by determining dielectric constant and electrical resistivity in function of active additives amount and sintering temperature. Fractal analysis has included determination of grain contour fractal dimension.


2021 ◽  
Vol 16 (12) ◽  
pp. C12028
Author(s):  
Md.A.A. Samy ◽  
A. Lapertosa ◽  
L. Vannoli ◽  
C. Gemme ◽  
G.-F. Dalla Betta

Abstract CERN is planning to upgrade its Large Hadron Collider to the High Luminosity phase (HL-LHC), pushing detector technologies to cope with unprecedently demanding performance in terms of particle rate and radiation hardness. The ATLAS experiment decided to equip the innermost layer (L0) of its Inner Tracker (ITk) with small-pitch 3D pixels of two different geometries, i.e., 25 µm × 100 µm for the central barrel and 50 µm × 50 µm for the lateral rings. A new generation of 3D pixels featuring these small-pitch dimensions and reduced active thickness (∼150 µm) has been developed to this purpose within a collaboration of INFN and FBK since 2014. Recently, the R&D activities have been focused on the characterization of modules based on sensors compatible with the RD53A readout chip, which were tested in laboratory and at beam lines. In this paper, we report on the characterization of modules irradiated with protons up to a fluence of 1 × 1016 neq/cm2, including threshold tuning and noise measurements, and results from beam tests performed at DESY. Moreover, we will discuss about the electrical characteristics at wafer level and at module level before and after irradiation.


1993 ◽  
Vol 316 ◽  
Author(s):  
W.Y. Cheung ◽  
S.P. Wong ◽  
I.H. Wilson ◽  
T.H. Zhang

ABSTRACTHigh dose Ge implantation into p-type <100> Si wafers at 150 keV has been performed at doses of 3.6×1016, 6.7×1016 and 9.0×1016 cm-2. The Ge distribution and the crystal quality of the implanted layer before and after annealing at various temperatures have been studied by RBS and channelling experiments. It is found that for the medium and high dose samples before annealing, more than 90% of the Ge atoms are in interstitial sites and after annealing at 1000°C, more than 50% of the Ge atoms have become substitutional. The situation is better for the low dose sample where less than 70% of the Ge atoms are in interstitial sites before annealing and about 80% of them become substitutional after annealing at 1000°C. The ESR spectra of these samples are of lorentzian shape with a g-value of about 2.007 and a spin density of about 6×1016 cm-3. The ESR signals of these samples have been inferred to be mainly due to Si-dangling bonds in the GeSi alloy layer and can be eliminated by annealing at 1000°C for 10 minutes. Electrical characterization of the GeSi layer by spreading resistance profiling technique shows that the implantation damage has been extended deep into the substrate before annealing. After annealing at 1000°C, these defects are removed but the spreading resistance of the surface GeSi layer is found to remain higher than that of the substrate.


2022 ◽  
Vol 17 (01) ◽  
pp. P01013
Author(s):  
Georges Aad ◽  
Brad Abbott ◽  
Dale Charles Abbott ◽  
Adam Abed Abud ◽  
Kira Abeling ◽  
...  

Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb-1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.


2014 ◽  
Vol 976 ◽  
pp. 129-132 ◽  
Author(s):  
Abraham Arias ◽  
Nicola Nedev ◽  
Mario Curiel ◽  
Diana Nesheva ◽  
Emil Manolov ◽  
...  

The effect of annealing temperature on the properties of c-Si wafer/SiOx interface (x = 1.15 and 1.3) is studied by Transmission Electron Microscopy and Capacitance/Conductance-Voltage measurements. Furnace annealing for 60 min at 700 and 1000 °C is used to grow amorphous or crystalline Si nanoparticles. The high temperature process leads to an epitaxial overgrowth of the Si wafer and an increase of the interface roughness, 3-4 monolayers at 700 °C and 4-5 monolayers at 1000 °C. The increased surface roughness is in correlation with the higher density of electrically active interface states.


Author(s):  
Wan Nurhasana binti Wan Ayub ◽  
Nurul Fadzlin Hasbullah ◽  
Abdul Wafi Rashid

<p>This paper presents the threshold voltage shifts for both p-channel and n-channel commercial power MOSFET before and after electron irradiation. The experiment was done under the 3MeV energy of electron with dose level varies from 50KGy until 250KGy. The results were plotted and analyzed in terms of the shifted voltage characteristics. It is observed that after irradiation, both p-channel and n-channel MOSFET experiences negative threshold voltage shifts. For n-channel devices, this is due to the radiation-induced positive charges dominated in the oxide traps while for p-channel devices it is believed due to radiation-induced ionization damage.</p>


2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Chengxu Zhou ◽  
Nikos Tsagarakis

In this paper, we present a thorough kinematics analysis of a humanoid two degrees-of-freedom (DoF) ankle module based on a parallel kinematics mechanism. Compared with the conventional serial configuration, the parallel kinematics ankle permits the distribution of the torque/power of the actuators to the two DoF of the ankle taking full advantage of available power/torque capacity of the two actuators. However, it complicates the kinematics study in return. In this work, a complete study of a parallel ankle mechanism is performed that permits the full characterization of the ankle module for the purpose of its design study, control, and performance evaluation. Screw theory is employed for mobility analysis to first determine the number and properties of the mechanism's DoFs. Then the inverse kinematics is solved analytically and the Jacobian matrix for describing the velocity relation between the ankle joints and motors is found. Based on these results, the forward kinematics of the parallel mechanism can be numerically computed using the Newton–Raphson method. The workspace of the ankle is also analyzed and the motor limits are decided accordingly. Finally, an experimental demonstration consisting of four tests is carried out to evaluate the proposed methods and ankle module.


Sign in / Sign up

Export Citation Format

Share Document