scholarly journals Muscularization of the Mesenchymal Outlet Septum during Cardiac Development

2020 ◽  
Vol 7 (4) ◽  
pp. 51
Author(s):  
Maurice J. B. van den Hoff ◽  
Andy Wessels

After the formation of the linear heart tube, it becomes divided into right and left components by the process of septation. Relatively late during this process, within the developing outflow tract, the initially mesenchymal outlet septum becomes muscularized as the result of myocardialization. Myocardialization is defined as the process in which existing cardiomyocytes migrate into flanking mesenchyme. Studies using genetically modified mice, as well as experimental approaches using in vitro models, demonstrate that Wnt and TGFβ signaling play an essential role in the regulation of myocardialization. They also show the significance of the interaction between cardiomyocytes, endocardial derived cells, neural crest cells, and the extracellular matrix. Interestingly, Wnt-mediated non-canonical planar cell polarity signaling was found to be a crucial regulator of myocardialization in the outlet septum and Wnt-mediated canonical β-catenin signaling is an essential regulator of the expansion of mesenchymal cells populating the outflow tract cushions.

2021 ◽  
Vol 8 (4) ◽  
pp. 42
Author(s):  
Sonia Stefanovic ◽  
Heather C. Etchevers ◽  
Stéphane Zaffran

Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Alison Schmidt ◽  
Matthew Durbin, MS MD ◽  
James O’Kane, MS ◽  
Stephanie M. Ware, MD PHD

Congenital heart disease (CHD) is the most common cause of death due to birth defects. Despite CHD frequency, the etiology remains mostly unknown. Understanding CHD genetics and elucidating disease mechanism will help establish prognosis, identify comorbidity risks, and develop targeted therapies. CHD often results from disrupted cytoarchitecture and signaling pathways. We have identified a novel CHD candidate SHROOM3, a protein associated with the actin cytoskeleton and the Wnt/Planar Cell Polarity (PCP) signaling pathway. SHROOM3 induces actomyosin constriction within the apical side of cells and is implicated in neural tube defects and chronic renal failure in humans. A recent study demonstrated that SHROOM3 interacts with Dishevelled2 (DVL2), a component of the PCP signaling pathway, suggesting that SHROOM3 serves as an important link between acto-myosin constriction and PCP signaling. PCP signaling establishes cell polarity required for multiple developmental processes, and is required for cardiac development. In Preliminary data we utilized a Shroom3 gene-trap mouse (Shroom3gt/gt) to demonstrated that SHROOM3 disruption leads to cardiac defects phenocopy PCP disruption. We also demonstrate that patients with CHD phenotypes have rare and potentially damaging SHROOM3 variants within SHROOM3’s PCP-binding domain. We hypothesize SHROOM3 is a novel terminal effector of PCP signaling, and disruption is a novel contributor to CHD. To test this, we assessed genetic interaction between SHROOM3 and PCP during cardiac development and the ultimate effect on cell structure and movement. Heterozygous Shroom3+/gt mice and heterozygous Dvl2 +/- mice are phenotypically normal. We demonstrated genetic interaction between SHROOM3 and PCP signaling by generating compound heterozygous Shroom3+/gt ;Dvl2 +/- mice and identifying a Double Outlet Right Ventricle and Ventricular Septal Defect in one embryo. We also observed fewer compound heterozygous mice than anticipated by Mendelian rations (observed: 18.4%; expected: 25%; n=76), suggesting potential lethality in utero. Immunohistochemistry demonstrates disrupted actomyosin in the SHROOM3gt/gt mice, characteristic of PCP disruption. These data help strengthen SHROOM3 as a novel CHD candidate gene and a component of the PCP Signaling pathway. Further characterization of this gene is important for CHD diagnosis and therapeutic development.


Biology Open ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 323-335 ◽  
Author(s):  
Brian C. Gibbs ◽  
Rama Rao Damerla ◽  
Eszter K. Vladar ◽  
Bishwanath Chatterjee ◽  
Yong Wan ◽  
...  

2021 ◽  
Vol 8 (12) ◽  
pp. 178
Author(s):  
Marisa E. Jaconi ◽  
Michel Puceat

Ethical issues restrict research on human embryos, therefore calling for in vitro models to study human embryonic development including the formation of the first functional organ, the heart. For the last five years, two major models have been under development, namely the human gastruloids and the cardiac organoids. While the first one mainly recapitulates the gastrulation and is still limited to investigate cardiac development, the second one is becoming more and more helpful to mimic a functional beating heart. The review reports and discusses seminal works in the fields of human gastruloids and cardiac organoids. It further describes technologies which improve the formation of cardiac organoids. Finally, we propose some lines of research towards the building of beating mini-hearts in vitro for more relevant functional studies.


Development ◽  
2020 ◽  
Vol 147 (23) ◽  
pp. dev193425
Author(s):  
Krishnanand Padmanabhan ◽  
Hanna Grobe ◽  
Jonathan Cohen ◽  
Arad Soffer ◽  
Adnan Mahly ◽  
...  

ABSTRACTPlanar cell polarity (PCP) is essential for tissue morphogenesis and homeostasis; however, the mechanisms that orchestrate the cell shape and packing dynamics required to establish PCP are poorly understood. Here, we identified a major role for the globular (G)-actin-binding protein thymosin-β4 (TMSB4X) in PCP establishment and cell adhesion in the developing epidermis. Depletion of Tmsb4x in mouse embryos hindered eyelid closure and hair-follicle angling owing to PCP defects. Tmsb4x depletion did not preclude epidermal cell adhesion in vivo or in vitro; however, it resulted in abnormal structural organization and stability of adherens junction (AJ) due to defects in filamentous (F)-actin and G-actin distribution. In cultured keratinocytes, TMSB4X depletion increased the perijunctional G/F-actin ratio and decreased G-actin incorporation into junctional actin networks, but it did not change the overall actin expression level or cellular F-actin content. A pharmacological treatment that increased the G/F-actin ratio and decreased actin polymerization mimicked the effects of Tmsb4x depletion on both AJs and PCP. Our results provide insights into the regulation of the actin pool and its involvement in AJ function and PCP establishment.


Author(s):  
Stéphane Zaffran

During vertebrate embryogenesis, the planar cell polarity (PCP) signalling pathway is responsible for cell movements essential for convergent extension during gastrulation, neural tube closure, neural crest cell migration, and heart morphogenesis. In the heart, the non-canonical Wnt/PCP pathway regulates cell polarity, cell shape, and cell dynamics during formation of the cardiac crescent and deployment of second heart field cardiac progenitors to the poles of the heart tube. PCP signalling is also essential for the establishment of left–right patterning in the early embryo. This chapter reviews our current understanding of PCP signalling in heart morphogenesis and how it affects the pathogenesis of congenital heart diseases.


2018 ◽  
Author(s):  
A. Jacobo ◽  
A. Dasgupta ◽  
A. Erzberger ◽  
K. Siletti ◽  
A. J. Hudspeth

The development of mechanosensory epithelia, such as those of the auditory and vestibular systems, results in the precise orientation of mechanosensory hair cells and consequently directional sensitivity. After division of a precursor cell in the zebrafish’s lateral line, the daughter hair cells differentiate with opposite mechanical sensitivity. Through a combination of theoretical and experimental approaches, we show that Notch1a-mediated lateral inhibition produces a bistable switch that reliably gives rise to cell pairs of opposite polarity. Using our mathematical model of the process, we predict the outcome of several genetic and chemical alterations to the system, which we then confirm experimentally. We show that Notch1a downregulates the expression of Emx2, a transcription factor known to be involved in polarity specification, and acts in parallel with the planar-cell-polarity system to determine the orientation of hair bundles. By analyzing the effect of simultaneous genetic perturbations to Notch1a and Emx2 we infer that the generegulatory network determining cell polarity includes undiscovered polarity effectors.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Shogo Nakayama ◽  
Tomoki Yano ◽  
Toshinori Namba ◽  
Satoshi Konishi ◽  
Maki Takagishi ◽  
...  

Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)–dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Anne Margarete Merks ◽  
Marie Swinarski ◽  
Alexander Matthias Meyer ◽  
Nicola Victoria Müller ◽  
Ismail Özcan ◽  
...  

2012 ◽  
Vol 4 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Barbara Rothen-Rutishauser ◽  
Martin J.D. Clift ◽  
Corinne Jud ◽  
Alke Fink ◽  
Peter Wick

AbstratThe human body can be exposed to nanomaterials through a variety of different routes. As nanomaterials get in contact with the skin, the gastrointestinal tract, and the respiratory tract, these biological compartments are acting as barriers to the passage of nano-sized materials into the organism. These structural and functional barriers are provided by the epithelia serving as an interface between biological compartments. In order to initiate the reduction, refinement and replacement of time consuming, expensive and stressful (to the animals) in vivo experimental approaches, many in vitro epithelial cell culture models have been developed during the last decades. This review therefore, focuses on the functional as well as structural aspects of epithelial cells as well as the most commonly used in vitro epithelial models of the primary biological barriers with which nanomaterials might come in contact with either occupationally, or during their manufacturing and application. The advantages and disadvantages of the different in vitro models are discussed in order to provide a clear overview as to whether or not epithelial cell cultures are an advantageous model to be used for basic mechanism and nanotoxicology research.


Sign in / Sign up

Export Citation Format

Share Document