scholarly journals Advances and Obstacles in Homology-Mediated Gene Editing of Hematopoietic Stem Cells

2021 ◽  
Vol 10 (3) ◽  
pp. 513
Author(s):  
Christi T. Salisbury-Ruf ◽  
Andre Larochelle

Homology-directed gene editing of hematopoietic stem and progenitor cells (HSPCs) is a promising strategy for the treatment of inherited blood disorders, obviating many of the limitations associated with viral vector-mediated gene therapies. The use of CRISPR/Cas9 or other programmable nucleases and improved methods of homology template delivery have enabled precise ex vivo gene editing. These transformative advances have also highlighted technical challenges to achieve high-efficiency gene editing in HSPCs for therapeutic applications. In this review, we discuss recent pre-clinical investigations utilizing homology-mediated gene editing in HSPCs and highlight various strategies to improve editing efficiency in these cells.

2021 ◽  
Vol 3 ◽  
Author(s):  
Samuele Ferrari ◽  
Valentina Vavassori ◽  
Daniele Canarutto ◽  
Aurelien Jacob ◽  
Maria Carmina Castiello ◽  
...  

In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.


Gene Therapy ◽  
2021 ◽  
Author(s):  
Jeremy Epah ◽  
Richard Schäfer

AbstractHematopoietic stem cell transplantation (HSCT) is the therapeutic concept to cure the blood/immune system of patients suffering from malignancies, immunodeficiencies, red blood cell disorders, and inherited bone marrow failure syndromes. Yet, allogeneic HSCT bear considerable risks for the patient such as non-engraftment, or graft-versus host disease. Transplanting gene modified autologous HSCs is a promising approach not only for inherited blood/immune cell diseases, but also for the acquired immunodeficiency syndrome. However, there is emerging evidence for substantial heterogeneity of HSCs in situ as well as ex vivo that is also observed after HSCT. Thus, HSC gene modification concepts are suggested to consider that different blood disorders affect specific hematopoietic cell types. We will discuss the relevance of HSC heterogeneity for the development and manufacture of gene therapies and in exemplary diseases with a specific emphasis on the key target HSC types myeloid-biased, lymphoid-biased, and balanced HSCs.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2149
Author(s):  
Zhi Feng ◽  
Chenyu Lin ◽  
Limei Tu ◽  
Ming Su ◽  
Chunyu Song ◽  
...  

Hematopoietic stem cells (HSCs) are a specialized subset of cells with self-renewal and multilineage differentiation potency, which are essential for their function in bone marrow or umbilical cord blood transplantation to treat blood disorders. Expanding the hematopoietic stem and progenitor cells (HSPCs) ex vivo is essential to understand the HSPCs-based therapies potency. Here, we established a screening system in zebrafish by adopting an FDA-approved drug library to identify candidates that could facilitate HSPC expansion. To date, we have screened 171 drugs of 7 categories, including antibacterial, antineoplastic, glucocorticoid, NSAIDS, vitamins, antidepressant, and antipsychotic drugs. We found 21 drugs that contributed to HSPCs expansion, 32 drugs’ administration caused HSPCs diminishment and 118 drugs’ treatment elicited no effect on HSPCs amplification. Among these drugs, we further investigated the vitamin drugs ergocalciferol and panthenol, taking advantage of their acceptability, limited side-effects, and easy delivery. These two drugs, in particular, efficiently expanded the HSPCs pool in a dose-dependent manner. Their application even mitigated the compromised hematopoiesis in an ikzf1−/− mutant. Taken together, our study implied that the larval zebrafish is a suitable model for drug repurposing of effective molecules (especially those already approved for clinical use) that can facilitate HSPCs expansion.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2931-2931
Author(s):  
Cory Sago ◽  
Elizabeth Campbell ◽  
Brianna Lutz ◽  
Neeraj Patwardhan ◽  
Gregory Hamilton ◽  
...  

Abstract Using adenine base editors, we aim to treat sickle cell disease by generating single nucleotide polymorphisms in human CD34+ hematopoietic stem and progenitor cells (HSPCs) at specific target sites by mediating A-T to G-C base conversions. While ex vivo gene editing approaches show great therapeutic promise, access is limited due to the requirement of an autologous hematopoietic stem cell (HSC) transplant to deliver the ex vivo edited cells. To further increase the number of patients eligible for base editing therapy, we are developing an alternative approach to directly deliver base editors to HSCs in vivo through non-viral delivery methods. Lipid Nanoparticles (LNPs) are a clinically validated, non-viral approach that enables the delivery of nucleic acid payloads, which may avoid the challenges associated with ex vivo approaches including the transplantation of edited CD34+ HSPCs. Here we describe the development and characterization of LNPs for the delivery of messenger RNA (mRNA) to HSPCs in vivo in both mice and cynomolgus macaques. By screening >1,000 chemically distinct LNPs in vivo utilizing a DNA barcoding technology, we identified several hit LNPs capable of biodistribution to HSPCs. Upon individual validation of these hit LNPs by delivery of Cre recombinase mRNA in a Cre-reporter mouse model (Ai14), which expresses the fluorescent protein tdTomato under a constitutive CAG promoter following Cre-meditate gene editing, we confirmed that several LNPs efficiently delivered Cre recombinase mRNA to mouse Lin-Sca-1+c-Kit+ (LSK) HSPCs. We next confirmed the most potent hit LNP (LNP-HSC1) identified from the in vivo screen to transfect LSK HSPCs in a dose-dependent manner between 0.1 and 1.0 mg/kg Cre recombinase mRNA, transfecting over 40% of LSK HSPCs in Ai14 mice at 1.0mg/kg. In a transfection durability study using Ai14 mice, we observed maintenance of tdTomato+ LSK HSPCs levels in the bone marrow at 10 weeks post-LNP delivery. As LNP-HSC1 had been identified and validated in mice of a C57BL6/j background, we next confirmed its ability to transfect a reporter mRNA into HSPCs in Balb/c mice and in 5 cynomolgus macaques. LNP-HSC1 efficiently transfected LSK HSPCs in Balb/c mice at doses ranging from 0.3 to 1.0 mg/kg. In 5 cynomolgus macaques (n=5 across two experiments), we observed a dose-dependent increase in reporter mRNA delivery with an average of 19% of bone marrow-derived CD34+ HSPCs (n=3) expressing the reporter protein at the highest dose tested. Taken together, these data demonstrate the value of our in vivo high-throughput LNP screening approach to identify novel LNPs capable of delivering to HSPCs, providing a promising delivery platform for an in vivo HSC gene editing approach for the treatment of hemoglobinopathies. Disclosures Sago: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Campbell: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Lutz: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Patwardhan: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Hamilton: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Wong: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Lee: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Keating: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Murray: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Singh: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company. Ciaramella: Beam Therapeutics: Current Employment, Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2255-2262 ◽  
Author(s):  
Shuqian Xu ◽  
Kevin Luk ◽  
Qiuming Yao ◽  
Anne H. Shen ◽  
Jing Zeng ◽  
...  

Abstract The thalassemias are compelling targets for therapeutic genome editing in part because monoallelic correction of a subset of hematopoietic stem cells (HSCs) would be sufficient for enduring disease amelioration. A primary challenge is the development of efficient repair strategies that are effective in HSCs. Here, we demonstrate that allelic disruption of aberrant splice sites, one of the major classes of thalassemia mutations, is a robust approach to restore gene function. We target the IVS1-110G>A mutation using Cas9 ribonucleoprotein (RNP) and the IVS2-654C>T mutation by Cas12a/Cpf1 RNP in primary CD34+ hematopoietic stem and progenitor cells (HSPCs) from β-thalassemia patients. Each of these nuclease complexes achieves high efficiency and penetrance of therapeutic edits. Erythroid progeny of edited patient HSPCs show reversal of aberrant splicing and restoration of β-globin expression. This strategy could enable correction of a substantial fraction of transfusion-dependent β-thalassemia genotypes with currently available gene-editing technology.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2933-2933
Author(s):  
Rkia El Kharrag ◽  
Kurt Berckmueller ◽  
Margaret Cui ◽  
Ravishankar Madhu ◽  
Anai M Perez ◽  
...  

Abstract Autologous hematopoietic stem cell (HSC) gene therapy has the potential to cure millions of patients suffering from hematological diseases and disorders. Recent HSCs gene therapy trials using CRISPR/Cas9 nucleases to treat sickle cell disease (SCD) have shown promising results paving the way for gene editing approaches for other diseases. However, current applications depend on expensive and rare GMP facilities for the manipulation of HSCs ex vivo. Consequently, this promising treatment option remains inaccessible to many patients especially in low- and middle-income settings. HSC-targeted in vivo delivery of gene therapy reagents could overcome this bottleneck and thereby enhance the portability and availability of gene therapy. Various kinds of nanoparticles (lipid, gold, polymer, etc.) are currently used to develop targeted ex vivo as well as in vivo gene therapy approaches. We have previously shown that poly (β-amino ester) (PBAE)-based nanoparticle (NP) formulations can be used to efficiently deliver mRNA into human T cells and umbilical cord blood-derived CD34 + hematopoietic stem and progenitor cells (HSPCs) (Moffet et al. 2017, Nature Communications). Here, we optimized our NP formulation to deliver mRNA into GCSF-mobilized adult human CD34 + HSPCs, a more clinically relevant and frequently used cell source for ex vivo and the primary target for in vivo gene therapy. Furthermore, we specifically focused on the evaluation of NP-mediated delivery of CRISPR/Cas9 gene editing reagents. The efficiency of our NP-mediated delivery of gene editing reagents was comprehensively tested in comparison to electroporation, the current experimental, pre-clinical as well as clinical standard for gene editing. Most important for the clinical translation of this technology, we defined quality control parameters for NPs, identified standards that can predict the editing efficiency, and established protocols to lyophilize and store formulated NPs for enhanced portability and future in vivo applications. Nanoformulations were loaded with Cas9 ribonucleoprotein (RNP) complexes to knock out CD33, an established strategy in our lab to protect HSCs from anti-CD33 targeted acute myeloid leukemia (AML) immunotherapy (Humbert et al. 2019, Leukemia). RNP-loaded NPs were evaluated for size and charge to correlate physiochemical properties with the outcome as well as establish quality control standards. NPs passing the QC were incubated with human GCSF-mobilized CD34 + hematopoietic stem and progenitor cells (HSPCs). In parallel, RNPs were delivered into CD34 + cells using our established EP protocol. NP- and EP-edited CD34 + cells were evaluated phenotypically by flow cytometry and functionally in colony-forming cell (CFC) assays as well as in NSG xenograft model. The optimal characteristics for RNP-loaded NPs were determined at 150-250 nm and 25-35 mV. Physiochemical assessment of RNP-loaded NP formations provided an upfront quality control of RNP components reliably detecting degraded components. Most importantly, NP charge directly correlated with the editing efficiency (Figure A). NPs achieved more than 85% CD33 knockout using 3-fold lower dose of CRISPR nucleases compared to EP. No impact on the erythromyeloid differentiation potential of gene-edited cells in CFC assays was observed. Finally, NP-modified CD34 + cells showed efficient and sustained gene editing in vivo with improved long-term multilineage engraftment potential in the peripheral blood (PB) and bone marrow stem cell compartment of NSG mice in comparison to EP-edited cells (Figure B). Here we show that PBAE-NPs enable efficient CRISPR/Cas9 gene editing of human GCSF-mobilized CD34 + cells without compromising the viability and long-term multilineage engraftment of human HSPCs in vivo. Most importantly, we defined physiochemical properties of PBAE-NPs that enable us to not only determine the integrity of our gene-editing agents but also predict the efficiency of editing in HSPCs. The requirement of 3-fold less reagents compared to EP, the ability to lyophilize quality-controlled and ready to administer gene therapy reagents, and the opportunity to engineer the surface of PBAE-NPs with HSC-targeting molecules (e.g. antibodies) could make this also a highly attractive and portable editing platform for in vivo HSC gene therapy. Figure 1 Figure 1. Disclosures Kiem: VOR Biopharma: Consultancy; Homology Medicines: Consultancy; Ensoma Inc.: Consultancy, Current holder of individual stocks in a privately-held company. Radtke: Ensoma Inc.: Consultancy; 47 Inc.: Consultancy.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.


2019 ◽  
Vol 76 ◽  
pp. S84
Author(s):  
Ludwig Schmiderer ◽  
Agatheeswaran Subramaniam ◽  
Kristijonas Žemaitis ◽  
Alexandra Bäckström ◽  
David Yudovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document