scholarly journals Fibrin Clot Properties in Atherosclerotic Vascular Disease: From Pathophysiology to Clinical Outcomes

2021 ◽  
Vol 10 (13) ◽  
pp. 2999
Author(s):  
Michał Ząbczyk ◽  
Joanna Natorska ◽  
Anetta Undas

Fibrin is a major component of thrombi formed on the surface of atherosclerotic plaques. Fibrin accumulation as a consequence of local blood coagulation activation takes place inside atherosclerotic lesions and contributes to their growth. The imbalance between thrombin-mediated fibrin formation and fibrin degradation might enhance atherosclerosis in relation to inflammatory states reflected by increased fibrinogen concentrations, the key determinant of fibrin characteristics. There are large interindividual differences in fibrin clot structure and function measured in plasma-based assays and in purified fibrinogen-based systems. Several observational studies have demonstrated that subjects who tend to generate denser fibrin networks displaying impaired clot lysis are at an increased risk of developing advanced atherosclerosis and arterial thromboembolic events. Moreover, the majority of cardiovascular risk factors are also associated with unfavorably altered fibrin clot properties, with their improvement following effective therapy, in particular with aspirin, statins, and anticoagulant agents. The prothrombotic fibrin clot phenotype has been reported to have a predictive value in terms of myocardial infarction, ischemic stroke, and acute limb ischemia. This review article summarizes available data on the association of fibrin clot characteristics with atherosclerotic vascular disease and its potential practical implications.

2015 ◽  
Vol 35 (01) ◽  
pp. 25-33 ◽  
Author(s):  
K. Hess

SummaryPatients with diabetes are at increased risk of cardiovascular morbidity and mortality. While arteriosclerotic lesions have long been recognized as the underlying cause more recent studies suggest that alterations of the blood are also critically involved. Following plaque rupture, adherence of platelets is followed by the formation of a cross-linked fibrin clot. Patients with diabetes exhibit a prothrombotic milieu consisting of hyper reactive platelets, a tight and rigid clot structure which is due to up-regulation of coagulation factors and prolongation of clot lysis. Metabolic alterations as well as inflammatory processes, which are up–regulated in diabetes, are thought to be the main underlying causes. More recently, the complement cascade has emerged as a potential new player in this context with several complement components directly influencing both platelet function and coagulation.This review provides an overview concerning the changes that lead to alterations of platelet function and clot structure in diabetes.


2014 ◽  
Vol 112 (08) ◽  
pp. 287-296 ◽  
Author(s):  
Magdalena Celińska-Löwenhoff ◽  
Teresa Iwaniec ◽  
Agnieszka Padjas ◽  
Jacek Musiał ◽  
Anetta Undas

SummaryWe tested the hypothesis that plasma fibrin clot structure/function is unfavourably altered in patients with antiphospholipid syndrome (APS). Ex vivo plasma clot permeability, turbidity and susceptibility to lysis were determined in 126 consecutive patients with APS enrolled five months or more since thrombotic event vs 105 controls. Patients with both primary and secondary APS were characterised by 11% lower clot permeability (p<0.001), 4.8% shorter lag phase (p<0.001), 10% longer clot lysis time (p<0.001), and 4.7% higher maximum level of D-dimer released from clots (p=0.02) as compared to the controls. Scanning electron microscopy images confirmed denser fibrin networks composed of thinner fibres in APS. Clots from patients with “triple-antibody positivity” were formed after shorter lag phase (p=0.019) and were lysed at a slower rate (p=0.004) than in the remainder. Clots from APS patients who experienced stroke and/or myocardial infarction were 8% less permeable (p=0.01) and susceptible to lysis (10.4% longer clot lysis time [p=0.006] and 4.5% slower release of D-dimer from clots [p=0.01]) compared with those following venous thromboembolism alone. Multivariate analysis adjusted for potential confounders showed that in APS patients, lupus anticoagulant and “triple-positivity” were the independent predictors of clot permeability, while “triple-positivity” predicted lysis time. We conclude that APS is associated with prothrombotic plasma fibrin clot phenotype, with more pronounced abnormalities in arterial thrombosis. Molecular background for this novel prothrombotic mechanism in APS remains to be established.


2017 ◽  
Vol 117 (09) ◽  
pp. 1739-1749 ◽  
Author(s):  
Agnieszka Janion-Sadowska ◽  
Joanna Natorska ◽  
Jakub Siudut ◽  
Michal Zabczyk ◽  
Andrzej Stanisz ◽  
...  

SummaryWe sought to investigate whether the G20210A prothrombin mutation modifies plasma fibrin clot properties in patients after venous thromboembolism (VTE) and how rivaroxaban treatment affects these alterations. We studied 34 prothrombin mutation heterozygous carriers and sex- and age-matched 34 non-carriers, all at least three months since the first VTE episode, before and during treatment with rivaroxaban. Clot permeability (Ks) and clot lysis time (CLT) with or without elimination of thrombin activatable fibrinolysis inhibitor (TAFI) were assessed at baseline, 2–6 hours (h) after and 20–25 h after intake of rivaroxaban (20 mg/day). At baseline, the prothrombin mutation group formed denser clots (Ks −12 %, p=0.0006) and had impaired fibrinolysis (CLT +14 %, p=0.004, and CLT-TAFI +13 %, p=0.03) compared with the no mutation group and were similar to those observed in 15 healthy unrelated prothrombin mutation carriers. The G20210A prothrombin mutation was the independent predictor for Ks and CLT before rivaroxaban intake. At 2–6 h after rivaroxaban intake, clot properties improved in both G20210A carriers and non-carriers (Ks +38 %, and +37 %, CLT −25 % and −25 %, CLT-TAFI −20 % and −24 %, respectively, all p<0.001), but those parameters were worse in the prothrombin mutation group (Ks −12.8 %, CLT +17 %, CLT-TAFI +13 %, all p<0.001). Rivaroxaban concentration correlated with fibrin clot properties. After 20–25 h since rivaroxaban intake most clot properties returned to baseline. Rivaroxaban-related differences in clot structure were confirmed by scanning electron microscopy images. In conclusion, rivaroxaban treatment, though improves fibrin clot properties, cannot abolish more prothrombotic fibrin clot phenotype observed in prothrombin mutation carriers following VTE.


2009 ◽  
Vol 49 (4) ◽  
pp. 1088-1089 ◽  
Author(s):  
Neeraj Bhasin ◽  
Duncan J. Parry ◽  
D. Julian A. Scott ◽  
Robert A.S. Ariëns ◽  
Peter J. Grant ◽  
...  

2018 ◽  
pp. 31-49 ◽  
Author(s):  
Stephen R. Baker ◽  
Robert A.S. Ariëns

2021 ◽  
Author(s):  
Malgorzata Wygrecka ◽  
Anna Birnhuber ◽  
Benjamin Seeliger ◽  
Laura Michalick ◽  
Oleg Pak ◽  
...  

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in two independent cohorts of critically ill COVID-19 patients in comparison to patients suffering from severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the kaolin clotting time was not prolonged in COVID-19 as compared to ARDS-influenza. Using confocal and electron microscopy, we show that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, we observed clot lysis in 30% of COVID-19 patients and 84% of ARDS influenza subjects. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19. Together, our results indicate that elevated fibrinogen levels and increased FXII activation rate promote thrombosis and thrombolysis resistance via enhanced thrombus formation and stability in COVID-19.


2012 ◽  
Vol 107 (04) ◽  
pp. 760-768 ◽  
Author(s):  
Edwin S. Gershom ◽  
Amanda L. Vanden Hoek ◽  
Scott C. Meixner ◽  
Michael R. Sutherland ◽  
Edward L.G. Pryzdial

SummaryThe incorporation of virus- and host-derived procoagulant factors initiates clotting directly on the surface of herpesviruses, which is an explanation for their correlation to vascular disease. The virus exploits the resulting thrombin to enhance infection by modulating the host cell through protease activated receptor (PAR) 1 signalling. Prior reports demonstrated that at least one herpesvirus expresses surface annexin A2 (A2), a cofactor for tissue plasminogen activator (tPA)-dependent activation of plasminogen to plasmin. Since plasmin is both a fibrinolytic protease and PAR agonist, we investigated whether herpesviruses enhance fibrinolysis and the effect of plasmin on cell infection. Herpes simplex virus types 1 (HSV1) and 2, and cytomegalovirus (CMV) purified from various cell lines each accelerated the proteolytic activation of plasminogen to plasmin by tPA. Ligand blots identified A2 as one of several plasminogen binding partners associated with the virus when compared to an A2-deficient virus. This was confirmed with inhibitory A2-antibodies. However, A2 was not required for virus-enhanced plasmin generation. HSV1, HSV2 and CMV accelerated tPA-dependent fibrin clot lysis by up to 2.8-fold. Modest plasmin generation and fibrinolysis was detected independent of exogenous tPA, which was inhibited by plasminogen activator inhibitor type-1 and ε-aminocaproic acid; however, the molecular basis remains speculative. Up to a ∼6-fold enhancement of infection was provided by plasmin-mediated cell infection. Inhibitory antibodies revealed that plasmin increased HSV1 infection through a mechanism involving PAR2. Thus, virus-enhanced fibrinolysis may help explain the paradox of the highly procoagulant in vitro herpesvirus surface eliciting only relatively weak independent vascular disease risk.


2020 ◽  
Vol 21 (19) ◽  
pp. 7107 ◽  
Author(s):  
Judith J. de Vries ◽  
Tamara Hoppenbrouwers ◽  
Cristina Martinez-Torres ◽  
Rezin Majied ◽  
Behiye Özcan ◽  
...  

Subjects with diabetes mellitus (DM) have an increased risk of arterial thrombosis, to which changes in clot structure and mechanics may contribute. Another contributing factor might be an increased formation of neutrophil extracellular traps (NETs) in DM. NETs are mainly formed during the acute phase of disease and form a network within the fibrin matrix, thereby influencing clot properties. Previous research has shown separate effects of NETs and DM on clot properties, therefore our aim was to study how DM affects clot properties in a model resembling an acute phase of disease with NETs formation. Clots were prepared from citrated plasma from subjects with and without DM with the addition of NETs, induced in neutrophils by S. aureus bacteria or phorbol myristate acetate (PMA). Structural parameters were measured using scanning electron microscopy, mechanical properties using rheology, and sensitivity to lysis using a fluorescence-based fibrinolysis assay. Plasma clots from subjects with DM had significantly thicker fibers and fewer pores and branch points than clots from subjects without DM. In addition, fibrinolysis was significantly slower, while mechanical properties were similar between both groups. In conclusion, in a model of acute NETs formation, DM plasma shows prothrombotic effects on fibrin clots.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 403-403
Author(s):  
Stephanie A. Smith ◽  
James H. Morrissey

Abstract Introduction: Inorganic polyphosphate (polyP) is a negatively charged polymer of phosphate units linked by high energy phosphoanhydride bonds. Dense granules of human platelets contain polyP which is released in response to thrombin stimulation. We recently reported that polyphosphate is a potent hemostatic regulator, accelerating blood clotting by activating the contact pathway and promoting the activation of factor V. Our previous studies found that polyP did not affect the time to clot formation when plasma was clotted with thrombin, however, suggesting that polyP exerts its procoagulant actions upstream of thrombin. We now report that polyP enhances fibrin clot structure. Methods: Purified fibrinogen and polyP were preincubated for 15 min in multiwell plates in buffer containing CaCl2, after which clotting was initiated by adding 0.1 to 8 nM thrombin and fibrin clot formation was evaluated by quantifying the change in turbidity (A405). Mass-length ratios were calculated from scans of A400 to A800. The effect of polyP on fibrinolysis was examined by adding 8 nM plasmin to the reaction mixtures immediately prior to thrombin. Scanning electron microscopy (SEM) was employed to visualize clot structure, and time courses of covalent fibrin cross-linking were assessed by SDS-PAGE. Results: PolyP had no effect on time to clot formation, but clots formed in the presence of polyP had markedly (up to threefold) higher turbidity than clots formed in the absence of polyP (see figure), irrespective of thrombin concentration. The increased turbidity in the presence of polyP was calcium-dependent and was enhanced when fibrinogen, CaCl2, and polyP were preincubated for up to 15 min prior to initiation of clotting with thrombin. PolyP increased the mass-length ratio of fibrin, and SEM confirmed that fibers formed with polyP were thicker than those formed without polyP. The ability of polyP to enhance fibrin clot turbidity was independent of factor XIIIa activity, and polyP did not alter the rate or extent of covalent fibrin cross-linking by factor XIIIa. When plasmin was included in clotting reactions containing polyP, mean times to 50% clot lysis were 28.5 ± 0.8 min for clots without polyP but 120.4 ± 5.6 min for clots with polyP. Conclusions: PolyP alters polymerization of fibrin, resulting in fibers of higher mass-length ratio that are lysed more slowly. This effect is calcium-dependent and is enhanced by preincubation of fibrinogen with calcium and polyP. Release of polyP from activated platelets or infectious microorganisms may therefore enhance fibrin clot structure. Figure Figure


2017 ◽  
Vol 117 (02) ◽  
pp. 295-302 ◽  
Author(s):  
Katie A. Greenhalgh ◽  
Mark W. Strachan ◽  
Saad Alzahrani ◽  
Paul D. Baxter ◽  
Kristina F. Standeven ◽  
...  

SummaryBoth type 2 diabetes (T2DM) and Bß448Lys variant of fibrinogen are associated with dense fibrin clots, impaired fibrinolysis and increased cardiovascular risk. It was our objective to investigate whether BßArg448Lys adds to vascular risk by modulating fibrin network structure and/or fibrinolysis in diabetes. The primary aim was to study effects of BßArg448Lys on fibrin network characteristics in T2DM. Secondary aims investigated interactions between gender and BßArg448Lys substitution in relation to fibrin clot properties and vascular disease. Genotyping for BßArg448Lys and dynamic clot studies were carried out on 822 T2DM patients enrolled in the Edinburgh Type 2 Diabetes Study. Turbidimetric assays of individual plasma samples analysed fibrin clot characteristics with additional experiments conducted on clots made from purified fibrinogen, further examined by confocal and electron microscopy. Plasma clot lysis time in Bß448Lys was longer than Bß448Arg variant (mean ± SD; 763 ± 322 and 719 ± 351 seconds [s], respectively; p<0.05). Clots made from plasma-purified fibrinogen of individuals with Arg/Arg, Arg/Lys and Lys/Lys genotypes showed differences in fibre thickness (46.75 ± 8.07, 38.40 ± 6.04 and 25 ± 4.99 nm, respectively; p<0.001) and clot lysis time (419 ± 64, 442 ± 87 and 517 ± 65 s, respectively; p=0.02), directly implicating the polymorphism in the observed changes. Women with Bß448Lys genotype had increased risk of cerebrovascular events and were younger compared with Bß448Arg variant (67.2 ± 4.0 and 68.2 ± 4.4 years, respectively; p=0.035). In conclusion, fibrinogen Bβ448Lys variant is associated with thrombotic fibrin clots in diabetes independently of traditional risk factors. Prospective studies are warranted to fully understand the role of BβArg448Lys in predisposition to vascular ischaemia in T2DM with the potential to develop individualised antithrombotic management strategies.


Sign in / Sign up

Export Citation Format

Share Document