scholarly journals Oncogenic Role of Secreted Engrailed Homeobox 2 (EN2) in Prostate Cancer

2019 ◽  
Vol 8 (9) ◽  
pp. 1400 ◽  
Author(s):  
Gómez-Gómez E. ◽  
Jiménez-Vacas J. M. ◽  
Pedraza-Arévalo S. ◽  
López-López F. ◽  
Herrero-Aguayo V. ◽  
...  

Engrailed variant-2 (EN2) has been suggested as a potential diagnostic biomarker; however, its presence and functional role in prostate cancer (PCa) cells is still controversial or unknown. Here, we analyzed 1) the expression/secretion profile of EN2 in five independent samples cohorts from PCa patients and controls (prostate tissues and/or urine) to determine its utility as a PCa biomarker; and 2) the functional role of EN2 in normal (RWPE1) and tumor (LNCaP/22Rv1/PC3) prostate cells to explore its potential value as therapeutic target. EN2 was overexpressed in our two cohorts of PCa tissues compared to control and in tumor cell lines compared with normal-like prostate cells. This profile was corroborated in silico in three independent data sets [The Cancer Genome Atlas(TCGA)/Memorial Sloan Kettering Cancer Center (MSKCC)/Grasso]. Consistently, urine EN2 levels were elevated and enabled discrimination between PCa and control patients. EN2 treatment increased cell proliferation in LNCaP/22Rv1/PC3 cells, migration in RWPE1/PC3 cells, and PSA secretion in LNCaP cells. These effects were associated, at least in the androgen-sensitive LNCaP cells, with increased AKT and androgen-receptor phosphorylation levels and with modulation of key cancer-associated genes. Consistently, EN2 treatment also regulated androgen-receptor activity (full-length and splicing variants) in androgen-sensitive 22Rv1 cells. Altogether, this study demonstrates the potential utility of EN2 as a non-invasive diagnostic biomarker for PCa and provides novel and valuable information to further investigate its putative utility to develop new therapeutic tools in PCa.

2021 ◽  
Author(s):  
Kai Fang ◽  
Yang Li ◽  
Yuqing Zhang ◽  
Shengjie Liang ◽  
Simin Li ◽  
...  

Abstract In recent decades, Bisphenol S (BPS), which have been considered as alternatives for Bisphenol A (BPA), have become widely used in personal care products, paper products and food. Clarifying the relationship between bisphenol and tumors is of great significance for the treatment and prevention of diseases. In this work, we discovered a new method to predict the correlation between bisphenol interactive genes and tumors. The transcriptome profile and interactive genes of bisphenol were obtained from the Cancer Genome Atlas and Genotype-Tissue Expression, Comparative Toxicology Genomics and PharmMapper database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that interactive genes were mainly enriched in prostate cancer. Gene targetd prediction and gene set variation analysis proved that bisphenol exert potential effects on prostate cancer. The operating characteristic curves and survival analysis showed that role of COL1A1 and COL1A2 in predicting the prognosis of prostate cancer. Cell counting kit-8 assay demonstrated that the cells with BPS-treated could remarkably promote the cell proliferation ability in both PC-3 and LNCap cells. Wound healing assay and the transwell assay demonstrated that the cells with BPS-treated could significantly promote the cell invasion capacity of prostate cells. Two key genes, COL1A1 and COL1A2, were significantly upregulated with BPS-treated in the PC-3 and LNCap cells.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 74-74
Author(s):  
Yoshiaki Yamamoto ◽  
Yohann Loriot ◽  
Eliana Beraldi ◽  
Tianyuan Zhou ◽  
Youngsoo Kim ◽  
...  

74 Background: While recent reports link androgen receptor (AR) variants (AR-Vs) to castration resistant prostate cancer (CRPC), the biological significance of AR-Vs in AR-regulated cell survival and proliferation, independent of AR full length (AR-FL), remains controversial. To define the functional role of AR-FL and AR-Vs in MDV3100-resistant (MDV-R), we designed antisense oligonucleotide (ASO) targeting exon 1 and exon 8 in AR to knockdown AR-FL alone or in combination with AR-Vs and examined these effects in MDV-R LNCaP-derived cells in vitro and in vivo. Methods: We generated by selection MDV-R LNCaP-derived sub-lines that uniformly expressed high levels of both AR-FL and AR-V7 compared to CRPC LNCaP xenografts. Cell growth rates, protein and gene expression were analyzed using crystal violet assay, western blotting and real-time PCR, respectively. Exon 1 and 8 AR-ASO were evaluated in MDV-R49F CRPC LNCaP xenografts. Results: AR-V7 was transiently transfected in MDV-R49F cells and differential knockdown of AR-V7 and/or AR-FL by exon 1 versus exon 8 AR-ASO was used to evaluate relative biologic contributions of AR-FL versus AR-V7 in MDV-R LNCaP AR-V7 overexpressing cells. Exon 1 and 8 AR-ASO treatment in these cells similarly decreased prostate-specific antigen (PSA) expression and induced apoptosis as measured by caspase-3 and PARP cleavage and cell growth inhibition. To further define the functional role of AR-Vs in MDV-R LNCaP cells, we used a CE3 siRNA that specifically silenced AR-V7, but not AR-FL in MDV-R LNCaP cells. AR-V7 knockdown did not decrease PSA levels, did not induce apoptosis, and did not inhibit cell growth. In MDV-R LNCaP cells, exon 1 and 8 ASO similarly suppressed cell growth and AR-regulated gene expression in vitro and in vivo. Conclusions: These results indicate that the AR remains an important driver of MDV3100 resistance and, the biologic consequences mainly driven by AR-FL in MDV-R LNCaP models.


Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 4716-4726 ◽  
Author(s):  
Sumudra Periyasamy ◽  
Manya Warrier ◽  
Manoranjani P. M. Tillekeratne ◽  
Weinian Shou ◽  
Edwin R. Sanchez

The androgen receptor (AR) contributes to growth of prostate cancer even under conditions of androgen ablation. Thus, new strategies to target AR activity are needed. The AR interacts with the immunophilin FK506-binding protein 52 (FKBP52), and studies in the FKBP52 knockout mouse have shown that this protein is essential to AR activity in the prostate. Therefore, we tested whether the immunophilin ligand FK506 affected AR activity in prostate cancer cell lines. We also tested the hypothesis that the AR interacts with another immunophilin, cyclophilin 40 (Cyp40), and is regulated by its cognate ligand cyclosporin A (CsA). We show that levels of FKBP52, FKBP51, Cyp40, and a related co-chaperone PP5 were much higher in prostate cancer cells lines [(LNCaP), PC-3, and DU145] compared with primary prostate cells, and that the AR of LNCaP cells can interact with Cyp40. In the absence of androgen, CsA caused inhibition of cell growth in the AR-positive LNCaP and AR-negative PC-3 and DU145 cell lines. Interestingly, FK506 only inhibited LNCaP cells, suggesting a dependence on the AR for this effect. Both CsA and FK506 inhibited growth without inducing apoptosis. In LNCaP cells, CsA completely blocked androgen-stimulated growth, whereas FK506 was partially effective. Further studies in LNCaP cells revealed that CsA and FK506 were able to block or attenuate several stages of AR signaling, including hormone binding, nuclear translocation, and activity at several AR-responsive reporter and endogenous genes. These findings provide the first evidence that CsA and FK506 can negatively modulate proliferation of prostate cells in vitro. Immunophilins may now serve as new targets to disrupt AR-mediated prostate cancer growth.


2021 ◽  
Author(s):  
Ilenia Giordani ◽  
Carlo M. Scornajenghi ◽  
Francesco Marampon ◽  
Antonella Stoppacciaro ◽  
Silvia Di Agostino ◽  
...  

Abstract Background: Human Dachshund homologue 1 (DACH1) is involved in carcinogenesis with opposite roles reported in different tumor types. Four alternatively spliced transcripts encoding different DACH1 isoforms were described but their specific role in human cancers is still unknown. Prostate cancer (PCa) is a heterogeneous disease with a very wide variability, so there is yet a relevant need to find new diagnostic and therapeutic biomarkers to make a safe clinical evaluation. It is well known that the differential expression of protein isoforms can induce distinct transcriptional programs with opposing effects on tumor progression and therapy. Thus, in this study we aimed to correlate the functional role of DACH1 with its splicing variants expression in PCa.Methods: The expression and functional role of DACH1 splicing variants in PCa were investigated using tumor (PC3) and normal (RWPE-1) cell lines, patient biopsies and TCGA dataset. Flow-cytometry, western blots and RT-qPCR were used for in vitro molecular characterization; invasion, adhesion, clonogenic assays and cell cycle analysis for functional characterization. Immunohystochemistry and western blot were performed on human PCa biopsies.Results: RT-qPCR and Western Blot revealed that DACH1-positive PC3 cells predominantly expressed DACH1 variant 4 (DACH1-v4), whereas RWPE-1 cells mostly expressed DACH1 variant 3. Stable DACH1-v4 overexpression enhanced the transformed phenotype of PC3 cells by inducing proliferation, colony formation, invasion ability, epithelial to mesenchymal transition. Given its intrinsic radioresistance, PCa frequently recurs after radiotherapy. Of note, DACH1-v4-overexpressing PC3 cells displayed higher radioresistant behavior. Overexpression of DACH1-v4 also transformed RWPE-1 cells to oncogenic phenotype, suggesting a pro-oncogenic role for this specific isoform. PCa biopsies analysis showed DACH1 nuclear staining enhanced throughout the increase of the tumor grade. Remarkably, tumor glands were found to express a long DACH1 variant, while normal prostate tissue expressed the short DACH1 isoform, in line with data from TCGA-PRAD analysis and our data in RWPE-1 cells. Conclusions: Our findings highlight the oncogenic role of DACH1-v4 in PCa and suggest that the longer DACH1 variants could be associated to pro-tumor function, while the shortest DACH1 variant would perform tumor suppression. The expression of specific DACH1 isoforms could represent a novel diagnostic/prognostic marker in PCa.


2007 ◽  
Vol 14 (3) ◽  
pp. 613-624 ◽  
Author(s):  
S Darby ◽  
J Stockley ◽  
M M Khan ◽  
C N Robson ◽  
H Y Leung ◽  
...  

GnRH II has important functional effects in steroid hormone-dependent tumours. Here we investigated the expression and regulation of GnRH II in prostate cancer. GnRH II protein was equally expressed in benign (73%) and malignant (78%) biopsies studied in a prostate tissue microarray (P = 0.779). There was no relationship between expression and clinical parameters in the cancer cohort. GnRH II was, however, significantly reduced in tumour biopsies following hormone ablation. This was further investigated in a prostate xenograft model where androgens increased GnRH II levels, while their withdrawal reduced it. In cell lines, we confirmed high levels of GnRH II in androgen receptor (AR)-positive LNCaP cells but low levels in AR-negative PC3 cells. In LNCaP cells, GnRH II induction by androgens was blocked by the AR inhibitor casodex, but not by cycloheximide treatment. Sequence analysis subsequently revealed a putative androgen response element in the upstream region of the GnRH II gene and direct interaction with the AR was confirmed in chromatin immunoprecipitation experiments. Finally, to test whether the effects of GnRH II were dependent on AR expression, LNCaP and PC3 cells were exposed to exogenous peptide. In both cell lines, GnRH II inhibited cell proliferation and migration, suggesting that its function is independent of AR status. These results provide evidence that GnRH II is widely expressed in prostate cancer and is an AR-regulated gene. Further studies are warranted to characterise the effects of GnRH II on prostate cancer cells and investigate its potential value as a novel therapy.


2019 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
Janeen H. Trembley ◽  
Betsy T. Kren ◽  
Md. J. Abedin ◽  
Daniel P. Shaughnessy ◽  
Yingming Li ◽  
...  

The prosurvival protein kinase CK2, androgen receptor (AR), and nuclear factor kappa B (NFκB) interact in the function of prostate cells, and there is evidence of crosstalk between these signals in the pathobiology of prostate cancer (PCa). As CK2 is elevated in PCa, and AR and NFκB are involved in the development and progression of prostate cancer, we investigated their interaction in benign and malignant prostate cells in the presence of altered CK2 expression. Our results show that elevation of CK2 levels caused increased levels of AR and NFκB p65 in prostate cells of different phenotypes. Analysis of TCGA PCa data indicated that AR and CK2α RNA expression are strongly correlated. Small molecule inhibition or molecular down-regulation of CK2 caused reduction in AR mRNA expression and protein levels in PCa cells and in orthotopic xenograft tumors by various pathways. Among these, regulation of AR protein stability plays a unifying role in CK2 maintenance of AR protein levels. Our results show induction of various endoplasmic reticulum stress signals after CK2 inhibition, which may play a role in the PCa cell death response. Of note, CK2 inhibition caused loss of cell viability in both parental and enzalutamide-resistant castrate-resistant PCa cells. The present work elucidates the specific link of CK2 to the pathogenesis of PCa in association with AR and NFκB expression; further, the observation that inhibition of CK2 can exert a growth inhibitory effect on therapy-resistant PCa cells emphasizes the potential utility of CK2 inhibition in patients who are on enzalutamide treatment for advanced cancer.


Sign in / Sign up

Export Citation Format

Share Document