scholarly journals Estimation of Unreported Novel Coronavirus (SARS-CoV-2) Infections from Reported Deaths: A Susceptible–Exposed–Infectious–Recovered–Dead Model

2020 ◽  
Vol 9 (5) ◽  
pp. 1350 ◽  
Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Sebastiano Battiato ◽  
Antonella Agodi

In the midst of the novel coronavirus (SARS-CoV-2) epidemic, examining reported case data could lead to biased speculations and conclusions. Indeed, estimation of unreported infections is crucial for a better understanding of the current emergency in China and in other countries. In this study, we aimed to estimate the unreported number of infections in China prior to the 23 January 2020 restrictions. To do this, we developed a Susceptible–Exposed–Infectious–Recovered–Dead (SEIRD) model that estimated unreported infections from the reported number of deaths. Our approach relied on the fact that observed deaths were less likely to be affected by ascertainment biases than reported infections. Interestingly, we estimated that the basic reproductive number (R0) was 2.43 (95%CI = 2.42–2.44) at the beginning of the epidemic and that 92.9% (95%CI = 92.5%–93.1%) of total cases were not reported. Similarly, the proportion of unreported new infections by day ranged from 52.1% to 100%, with a total of 91.8% (95%CI = 91.6%–92.1%) of infections going unreported. Agreement between our estimates and those from previous studies proves that our approach is reliable for estimating the prevalence and incidence of undocumented SARS-CoV-2 infections. Once it has been tested on Chinese data, our model could be applied to other countries with different surveillance and testing policies.

2020 ◽  
Author(s):  
Yanjin Wang ◽  
Pei Wang ◽  
Shudao Zhang ◽  
Hao Pan

Abstract Motivated by the quick control in Wuhan, China, and the rapid spread in other countries of COVID-19, we investigate the questions that what is the turning point in Wuhan by quantifying the variety of basic reproductive number after the lockdown city. The answer may help the world to control the COVID-19 epidemic. A modified SEIR model is used to study the COVID-19 epidemic in Wuhan city. Our model is calibrated by the hospitalized cases. The modeling result gives out that the means of basic reproductive numbers are 1.5517 (95% CI 1.1716-4.4283) for the period from Jan 25 to Feb 11, 2020, and 0.4738(95% CI 0.0997-0.8370) for the period from Feb 12 to Mar 10. The transmission rate fell after Feb 12, 2020 as a result of China’s COVID-19 strategy of keeping society distance and the medical support from all China, but principally because of the clinical symptoms to be used for the novel coronavirus pneumonia (NCP) confirmation in Wuhan since Feb 12, 2020. Clinical diagnosis can quicken up NCP-confirmation such that the COVID-19 patients can be isolated without delay. So the clinical symptoms pneumonia-confirmation is the turning point of the COVID-19 battle of Wuhan. The measure of clinical symptoms pneumonia-confirmation in Wuhan has delayed the growth and reduced size of the COVID-19 epidemic, decreased the peak number of the hospitalized cases by 96% in Wuhan. Our modeling also indicates that the earliest start date of COVID-19 in Wuhan may be Nov 2, 2019.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. A. A. El-Saka ◽  
I. Obaya ◽  
H. N. Agiza

AbstractAs is well known the novel coronavirus (COVID-19) is a zoonotic virus and our model is concerned with the effect of the zoonotic source of the coronavirus during the outbreak in China. We present a SEIS complex network epidemic model for the novel coronavirus. Our model is presented in fractional form and with varying population. The steady states and the basic reproductive number are calculated. We also present some numerical examples and the sensitivity analysis of the basic reproductive number for the parameters.


Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Sebastiano Battiato ◽  
Antonella Agodi

In the midst of the novel coronavirus (SARS-CoV-2) epidemic, examining reported case data could lead to biased speculations and conclusions. Indeed, estimation of unreported infections is crucial for a better understanding of the current emergency in China and in other countries. In this study, we aimed to estimate the unreported number of infections in China prior to 23 March 2020 restrictions. To do that, we developed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model which estimated unreported cases and infections from the reported number of deaths. Our approach relied on the fact that observed deaths were less likely to be affected by reporting biases than reported infections. Interestingly, we estimated that R0 was 2.43 (95%CI= 2.42 – 2.44) at the beginning of the epidemic, and that 92.9% (95%CI= 92.5% - 93.1%) of total cases were not reported. Similarly, the proportion of unreported new infections by day ranged from 52.1% to 100%, with a total of 91.8% (95%CI= 91.6% - 92.1%) unreported infections. Agreement between our estimates and those from previous studies proved that our approach was reliable to estimate prevalence and incidence of undocumented SARS-CoV2 infections. Once tested on Chinese data, our model could be applied on other countries with different surveillance and testing policies.


Author(s):  
Steven Sanche ◽  
Yen Ting Lin ◽  
Chonggang Xu ◽  
Ethan Romero-Severson ◽  
Nick Hengartner ◽  
...  

AbstractThe novel coronavirus (2019-nCoV) is a recently emerged human pathogen that has spread widely since January 2020. Initially, the basic reproductive number, R0, was estimated to be 2.2 to 2.7. Here we provide a new estimate of this quantity. We collected extensive individual case reports and estimated key epidemiology parameters, including the incubation period. Integrating these estimates and high-resolution real-time human travel and infection data with mathematical models, we estimated that the number of infected individuals during early epidemic double every 2.4 days, and the R0 value is likely to be between 4.7 and 6.6. We further show that quarantine and contact tracing of symptomatic individuals alone may not be effective and early, strong control measures are needed to stop transmission of the virus.One-sentence summaryBy collecting and analyzing spatiotemporal data, we estimated the transmission potential for 2019-nCoV.


Author(s):  
Can Zhou

AbstractThe novel coronavirus (COVID-19), first detected in Wuhan, China in December 2019, has spread to 28 countries/regions with over 43,000 confirmed cases. Much about this outbreak is still unknown. At this early stage of the epidemic, it is important to investigate alternative sources of information to understand its dynamics and spread. With updated real time domestic traffic, this study aims to integrate recent evidence of international evacuees extracted from Wuhan between Jan. 29 and Feb. 2, 2020 to infer the dynamics of the COVD-19 outbreak in Wuhan. In addition, a modified SEIR model was used to evaluate the empirical support for the presence of asymptomatic transmissions. Based on the data examined, this study found little evidence for the presence of asymptomatic transmissions. However, it is still too early to rule out its presence conclusively due to sample size and other limitations. The updated basic reproductive number was found to be 2.12 on average with a 95% credible interval of [2.04, 2.18]. It is smaller than previous estimates probably because the new estimate factors in the social and non-pharmaceutical mitigation implemented in Wuhan through the evacuee dataset. Detailed predictions of infected individuals exported both domestically and internationally were produced. The estimated case confirmation rate has been low but has increased steadily to 23.37% on average. The findings of this study depend on the validity of the underlying assumptions, and continuing work is needed, especially in monitoring the current infection status of Wuhan residents.


Author(s):  
Huijuan Zhou ◽  
Chengbin Xue ◽  
Guannan Gao ◽  
Lauren Lawless ◽  
Linglin Xie ◽  
...  

ABSTRACTThe outbreak of the novel coronavirus disease, COVID-19, originating from Wuhan, China in early December, has infected more than 70,000 people in China and other countries and has caused more than 2,000 deaths. As the disease continues to spread, the biomedical society urgently began identifying effective approaches to prevent further outbreaks. Through rigorous epidemiological analysis, we characterized the fast transmission of COVID-19 with a basic reproductive number 5.6 and proved a sole zoonotic source to originate in Wuhan. No changes in transmission have been noted across generations. By evaluating different control strategies through predictive modeling and Monte carlo simulations, a comprehensive quarantine in hospitals and quarantine stations has been found to be the most effective approach. Government action to immediately enforce this quarantine is highly recommended.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
D. Abraham Vianny ◽  
Mary Jacintha ◽  
Fatma Bozkurt Yousef

Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings.


2020 ◽  
Vol 9 (4) ◽  
pp. 944 ◽  
Author(s):  
Kentaro Iwata ◽  
Chisato Miyakoshi

Ongoing outbreak of pneumonia caused by novel coronavirus (2019-nCoV) began in December 2019 in Wuhan, China, and the number of new patients continues to increase. Even though it began to spread to many other parts of the world, such as other Asian countries, the Americas, Europe, and the Middle East, the impact of secondary outbreaks caused by exported cases outside China remains unclear. We conducted simulations to estimate the impact of potential secondary outbreaks in a community outside China. Simulations using stochastic SEIR model were conducted, assuming one patient was imported to a community. Among 45 possible scenarios we prepared, the worst scenario resulted in the total number of persons recovered or removed to be 997 (95% CrI 990–1000) at day 100 and a maximum number of symptomatic infectious patients per day of 335 (95% CrI 232–478). Calculated mean basic reproductive number (R0) was 6.5 (Interquartile range, IQR 5.6–7.2). However, better case scenarios with different parameters led to no secondary cases. Altering parameters, especially time to hospital visit. could change the impact of a secondary outbreak. With these multiple scenarios with different parameters, healthcare professionals might be able to better prepare for this viral infection.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chunyu Li ◽  
Yuchen Zhu ◽  
Chang Qi ◽  
Lili Liu ◽  
Dandan Zhang ◽  
...  

Background: Novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), is now sweeping across the world. A substantial proportion of infections only lead to mild symptoms or are asymptomatic, but the proportion and infectivity of asymptomatic infections remains unknown. In this paper, we proposed a model to estimate the proportion and infectivity of asymptomatic cases, using COVID-19 in Henan Province, China, as an example.Methods: We extended the conventional susceptible-exposed-infectious-recovered model by including asymptomatic, unconfirmed symptomatic, and quarantined cases. Based on this model, we used daily reported COVID-19 cases from January 21 to February 26, 2020, in Henan Province to estimate the proportion and infectivity of asymptomatic cases, as well as the change of effective reproductive number, Rt.Results: The proportion of asymptomatic cases among COVID-19 infected individuals was 42% and the infectivity was 10% that of symptomatic ones. The basic reproductive number R0 = 2.73, and Rt dropped below 1 on January 31 under a series of measures.Conclusion: The spread of the COVID-19 epidemic was rapid in the early stage, with a large number of asymptomatic infected individuals having relatively low infectivity. However, it was quickly brought under control with national measures.


Author(s):  
C. Brandon Ogbunugafor ◽  
Miles Miller-Dickson ◽  
Victor A. Meszaros ◽  
Lourdes M. Gomez ◽  
Anarina L. Murillo ◽  
...  

ABSTRACTCOVID-19 has circled the globe, rapidly expanding into a pandemic within a matter of weeks. While early studies revealed important features of SARS-CoV-2 transmission, the role of variation in free-living virus survival in modulating the dynamics of outbreaks remains unclear and controversial. Using an empirically determined understanding of the natural history of SARS-CoV-2 infection and detailed, country-level case data, we elucidate how variation in free-living virus survival influences key features of COVID-19 epidemics. Our findings suggest that environmental transmission can have a subtle, yet significant influence on COVID-19’s basic reproductive number () and other key signatures of outbreak intensity. Summarizing, we propose that variation in environmental transmission may explain some observed differences in disease dynamics from setting to setting, and can inform public health interventions.


Sign in / Sign up

Export Citation Format

Share Document