scholarly journals Polymorphic Adversarial Cyberattacks Using WGAN

2021 ◽  
Vol 1 (4) ◽  
pp. 767-792
Author(s):  
Ravi Chauhan ◽  
Ulya Sabeel ◽  
Alireza Izaddoost ◽  
Shahram Shah Heydari

Intrusion Detection Systems (IDS) are essential components in preventing malicious traffic from penetrating networks and systems. Recently, these systems have been enhancing their detection ability using machine learning algorithms. This development also forces attackers to look for new methods for evading these advanced Intrusion Detection Systemss. Polymorphic attacks are among potential candidates that can bypass the pattern matching detection systems. To alleviate the danger of polymorphic attacks, the IDS must be trained with datasets that include these attacks. Generative Adversarial Network (GAN) is a method proven in generating adversarial data in the domain of multimedia processing, text, and voice, and can produce a high volume of test data that is indistinguishable from the original training data. In this paper, we propose a model to generate adversarial attacks using Wasserstein GAN (WGAN). The attack data synthesized using the proposed model can be used to train an IDS. To evaluate the trained IDS, we study several techniques for updating the attack feature profile for the generation of polymorphic data. Our results show that by continuously changing the attack profiles, defensive systems that use incremental learning will still be vulnerable to new attacks; meanwhile, their detection rates improve incrementally until the polymorphic attack exhausts its profile variables.

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6432
Author(s):  
Khalid Albulayhi ◽  
Abdallah A. Smadi ◽  
Frederick T. Sheldon ◽  
Robert K. Abercrombie

This paper surveys the deep learning (DL) approaches for intrusion-detection systems (IDSs) in Internet of Things (IoT) and the associated datasets toward identifying gaps, weaknesses, and a neutral reference architecture. A comparative study of IDSs is provided, with a review of anomaly-based IDSs on DL approaches, which include supervised, unsupervised, and hybrid methods. All techniques in these three categories have essentially been used in IoT environments. To date, only a few have been used in the anomaly-based IDS for IoT. For each of these anomaly-based IDSs, the implementation of the four categories of feature(s) extraction, classification, prediction, and regression were evaluated. We studied important performance metrics and benchmark detection rates, including the requisite efficiency of the various methods. Four machine learning algorithms were evaluated for classification purposes: Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), and an Artificial Neural Network (ANN). Therefore, we compared each via the Receiver Operating Characteristic (ROC) curve. The study model exhibits promising outcomes for all classes of attacks. The scope of our analysis examines attacks targeting the IoT ecosystem using empirically based, simulation-generated datasets (namely the Bot-IoT and the IoTID20 datasets).


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


Author(s):  
Xinyi Li ◽  
Liqiong Chang ◽  
Fangfang Song ◽  
Ju Wang ◽  
Xiaojiang Chen ◽  
...  

This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: "Can we use the knowledge learned from some users to perform gesture recognition for others?". This problem is also known as cross-target recognition. It arises in many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user. Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.


Author(s):  
Huilin Zhou ◽  
Huimin Zheng ◽  
Qiegen Liu ◽  
Jian Liu ◽  
Yuhao Wang

Abstract Electromagnetic inverse-scattering problems (ISPs) are concerned with determining the properties of an unknown object using measured scattered fields. ISPs are often highly nonlinear, causing the problem to be very difficult to address. In addition, the reconstruction images of different optimization methods are distorted which leads to inaccurate reconstruction results. To alleviate these issues, we propose a new linear model solution of generative adversarial network-based (LM-GAN) inspired by generative adversarial networks (GAN). Two sub-networks are trained alternately in the adversarial framework. A linear deep iterative network as a generative network captures the spatial distribution of the data, and a discriminative network estimates the probability of a sample from the training data. Numerical results validate that LM-GAN has admirable fidelity and accuracy when reconstructing complex scatterers.


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Author(s):  
Shyla Shyla ◽  
Vishal Bhatnagar ◽  
Vikram Bali ◽  
Shivani Bali

A single Information security is of pivotal concern for consistently streaming information over the widespread internetwork. The bottleneck flow of incoming and outgoing data traffic introduces the issue of malicious activities taken place by intruders, hackers and attackers in the form of authenticity desecration, gridlocking data traffic, vandalizing data and crashing the established network. The issue of emerging suspicious activities is managed by the domain of Intrusion Detection Systems (IDS). The IDS consistently monitors the network for identifica-tion of suspicious activities and generates alarm and indication in presence of malicious threats and worms. The performance of IDS is improved by using different signature based machine learning algorithms. In this paper, the performance of IDS model is determined using hybridization of nestrov-accelerated adaptive moment estimation –stochastic gradient descent (HNADAM-SDG) algorithm. The performance of the algorithm is compared with other classi-fication algorithms as logistic regression, ridge classifier and ensemble algorithm by adapting feature selection and optimization techniques


Author(s):  
S. M. Tilon ◽  
F. Nex ◽  
D. Duarte ◽  
N. Kerle ◽  
G. Vosselman

Abstract. Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders in post-disaster scenarios. Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate how to further classify the found damages and how to improve damage detection for asphalt roads.


Sign in / Sign up

Export Citation Format

Share Document