scholarly journals Enhancing the Fracture Toughness Properties by Introducing Anchored Nano-Architectures at the Metal–FRP Composite Interface

2019 ◽  
Vol 3 (1) ◽  
pp. 17 ◽  
Author(s):  
Ghowsalya Mahendrarajah ◽  
Everson Kandare ◽  
Akbar A. Khatibi

This paper presents a novel technique for improving aluminium–glass/epoxy composite interfacial bonding through the generation of metallic nano-architectures on the metal surface. Silver nanowires (AgNWs) deposited via solution casting at varying concentrations and annealed at different temperatures in an air atmosphere improved the aluminium-glass/epoxy composite fracture toughness as measured via mode I experiments. For AgNW concentrations of 1 and 3 g/m2 deposited via a single-stage process and annealed at 375 °C, the initiation fracture toughness of the aluminium-glass/epoxy composite improved by 86% and 157%, respectively, relative to the baseline composite without AgNWs. The corresponding steady-state fracture toughness of these nano-modified fibre metal laminates (FMLs) were at least seven times greater than the baseline composite. The FML variant in which AgNWs were deposited at a concentration of 3 g/m2 through a two-stage process followed by annealing at 375 °C and 300 °C, respectively after each deposition, achieved the highest steady-state fracture toughness of all nano-modified composites—a fracture toughness value that was 13 times greater than the baseline composite. Intrinsic and extrinsic toughening mechanisms dictated by the morphology of the silver nano-architectures were found to be responsible for the improved initiation and steady-state fracture toughness in nano-modified FMLs.

2005 ◽  
Vol 96 (8) ◽  
pp. 924-932
Author(s):  
M. Tarafder ◽  
Swati Dey ◽  
S. Sivaprasad ◽  
S. Tarafder ◽  
M. Nasipuri

2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2225 ◽  
Author(s):  
Ikramullah ◽  
Samsul Rizal ◽  
Yoshikazu Nakai ◽  
Daiki Shiozawa ◽  
H.P.S. Abdul Khalil ◽  
...  

The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.


2017 ◽  
Vol 727 ◽  
pp. 806-814 ◽  
Author(s):  
Xiao Wei Ma ◽  
Jian Xing Shen ◽  
Ke Chang Zhang ◽  
Ling Kai Kong ◽  
Jia Le Sun ◽  
...  

Here in, we report the porous bioceramic with Na2Ti6O13 rods prepared by in‒situ growth method. The samples were prepared using cold uniaxial pressing (40 MPa) technique and further sintered at different temperatures. The structure and morphology were characterized by XRD and SEM. The porosity, compressive strength and fracture toughness were also investigated. The bone-like apatite deposition ability of the fabricated ceramic samples was evaluated by Kokubo simulated body fluid (SBF) soaking method. The results indicated that the Na2Ti6O13 rods with about 1‒3 μm in diameter are uniformly distributed in the self‒toughness porous sodium titanate ceramics (SPSTC). The SPSTC with a porosity of 61.10±1.12 % exhibits good compressive strength (43.36±2.43 MPa) and fracture toughness (3.47±0.21 MPa·m1/2). The results indicate that the novel SPSTC scaffolds are promising for bone tissue engineering applications.


2018 ◽  
Vol 5 (1) ◽  
pp. 93-104
Author(s):  
Araya Abera Betelie ◽  
◽  
Yonas Tsegaye Megera ◽  
Daniel Telahun Redda ◽  
Antony Sinclair

2008 ◽  
Vol 15 (4) ◽  
pp. 414 ◽  
Author(s):  
E. GONZÁLEZ-FANDOS ◽  
A. SIMON JIMENES ◽  
V. TOBAR PARDO

The sensory and microbiological quality of sliced mushrooms (Agaricus bisporus L.) packaged in films of perforated and non-perforated PVC and stored at 3 and 9ºC, was studied. The carbon dioxide and oxygen content inside the packages, colour, weight loss, sensory attributes, mesophiles, Pseudomonas, Enterobacteriaceae, aerobic and anaerobic spore formers were determined. The atmosphere generated with the perforated PVC film was similar to that of air atmosphere at 3 or 9ºC. T.he non-perforated PVC film generated inside the packages CO2 : O2 concentrations of 3.4% : 8.1% at 3ºC and CO2 : O2 concentrations of 4.5% : 0.15% at 9ºC. Browning of mushrooms was lower at 3 than at 9ºC. The quality of sliced mushrooms packaged in perforated PVC and stored at 3ºC was adequate after 9 days. However, at 9ºC, the slice deformation and brown blotches incidence were severe after 9 days. The atmosphere generated with non-perforated PVC inhibited aerobic microorganism growth compared to mushrooms packaged in perforated PVC. At 3ºC, the shelf life of mushrooms packaged in non perforated PVC was around 13 days. However, the extremely low O2 atmospheres generated at 9ºC was accompanied by off-odours and growth of anaerobic spore formers, although the appearance of sliced mushrooms was acceptable.;


2013 ◽  
Vol 678 ◽  
pp. 193-197
Author(s):  
Periyasamy Gowthaman ◽  
Manickam Saroja ◽  
Muthusamy Venkatachalam ◽  
Jagadeesh Deenathayalan ◽  
N. Muthukumarasamy ◽  
...  

A novel and simple approach is reported to fabricate ZnO nanorods. Zinc acetate dihydrate, ethanol and de-ionized water were used to prepare seed layer. Zinc nitrate and hexamethylenetetramine solution were used for growth of ZnO nanorods. The ZnO nanorods were grown at two different temperatures of 90°C and 120°C and annealed at three different temperatures of 300°C, 400°C and 500°C in air atmosphere. Nanorod growth temperature and annealing temperature are varied and the corresponding changes in structural, morphological and optical properties were reported. The structure, orientation, surface morphology and optical properties of the ZnO nanorods were investigated by XRD, SEM & UV studies. The influence of growth and annealing temperatures on structural and optical properties were reported.


Sign in / Sign up

Export Citation Format

Share Document