scholarly journals Strain-Mediated Magneto-Electric Effects in Coaxial Nanofibers of Y/W-Type Hexagonal Ferrites and Ferroelectrics

2021 ◽  
Vol 5 (10) ◽  
pp. 268
Author(s):  
Ying Liu ◽  
Peng Zhou ◽  
Bingfeng Ge ◽  
Jiahui Liu ◽  
Jitao Zhang ◽  
...  

Nanofibers of Y- or W-type hexagonal ferrites and core–shell fibers of hexagonal ferrites and ferroelectric lead zirconate titanate (PZT) or barium titanate (BTO) were synthesized by electrospinning. The fibers were found to be free of impurity phases, and the core–shell structure was confirmed by electron and scanning probe microscopy. The values of magnetization of pure hexagonal ferrite fibers compared well with bulk ferrite values. The coaxial fibers showed good ferroelectric polarization, with a maximum value of 0.85 μC/cm2 and 2.44 μC/cm2 for fibers with BTO core–Co2W shell and PZT core–Ni2Y shell structures, respectively. The magnetization, however, was much smaller than that for bulk hexaferrites. Magneto-electric (ME) coupling strength was characterized by measuring the ME voltage coefficient (MEVC) for magnetic field-assembled films of coaxial fibers. Among the fibers with Y-type, films with Zn2Y showed a higher MEVC than films with Ni2Y, and fibers with Co2W had a higher MEVC than that of those with Zn2W. The highest MEVC of 20.3 mV/cm Oe was measured for Co2W–PZT fibers. A very large ME response was measured in all of the films, even in the absence of an external magnetic bias field. The fibers studied here have the potential for use in magnetic sensors and high-frequency device applications.

2007 ◽  
Vol 22 (8) ◽  
pp. 2130-2135 ◽  
Author(s):  
V. Gheevarughese ◽  
U. Laletsin ◽  
V.M. Petrov ◽  
G. Srinivasan ◽  
N.A. Fedotov

The nature of magnetoelectric (ME) interactions has been investigated in lead zirconate titanate (PZT) and (111) or (110) single-crystal nickel zinc ferrites. Data on the dependence of low-frequency ME voltage coefficients on static magnetic field orientation show (i) highest ME coefficients for bias field H along [100] and the smallest for H parallel to [110] and (ii) strongest ME interactions for transverse fields and for samples with Zn concentration of 0.3. Measurements on frequency dependence of ME coefficients reveal resonance enhancement due to bending and radial acoustic modes. The highest voltage coefficient is measured for radial modes in a sample with Zn concentration of 0.2. Theoretical estimates of low-frequency and resonance ME parameters are in very good agreement with data.


2014 ◽  
Vol 1061-1062 ◽  
pp. 184-188 ◽  
Author(s):  
Hong Xia Cao ◽  
Qian Shi ◽  
Jia Yang You ◽  
Yu Fang ◽  
Huang Sun

By using a elastic mechanics model the transverse magnetoelectric voltage coefficient of magnetostrictive-piezoelectric bilayer is derived according to the constitutive equations. The transverse magnetoelectric coupling of nickel zinc ferrite-lead zirconate titanate (Ni0.8Zn0.2Fe2O4–Pb (Zr,Ti)O3, NZFO-PZT) layered composites were calculated by using the corresponding material parameters of individual phases. NZFO samples have been synthesized with sol–gel technique. Layered composites NZFO-PZT and NZFO-PZT-NZFO have been fabricated by binding discs of NZFO and commercially available PZT, and the transverse magnetoelectric effect have been investigated. The peak value of transverse magnetoelectric voltage coefficient for NZFO-PZT-NZFO trilayer reaches 252.4 mV/cmOe under a bias magnetic field of about 320 Oe, which is about three times as large as that of NZFO-PZT bilayer. The interface coupling parameter of trilayer is significantly higher than that of bilayer.


2009 ◽  
Vol 389 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Takashi Iijima ◽  
Yuji Kobayashi ◽  
Hiroshi Naganuma ◽  
Soichiro Okamura

Author(s):  
Д.А. Филиппов ◽  
В.М. Лалетин ◽  
Н.Н. Поддубная ◽  
V.V. Shvartsman ◽  
D.C. Lupascu ◽  
...  

A new way for determining the magnetostriction characteristics of a composite multiferroics using the magnetoelectric response of the structure is proposed. It is shown that integral from the field dependency of linear magnetoelectric coefficient is the magnetostriction characteristic of the structure. The results of an experimental study of the physical properties of bulk composites based on lead zirconate titanate and ferrite-nickel spinel are presented. Based on the field dependence of the magnetoelectric voltage coefficient, magnetostriction curves of composite structures with a content of ferrospinel of 10–70% were obtained.


2016 ◽  
Vol 51 (4) ◽  
pp. 507-517 ◽  
Author(s):  
I V Lisnevskaya ◽  
TG Lupeiko ◽  
KV Myagkaya

Technique to fabricate magnetoelectric piezoelectric/magnetostrictive ferrite composites with 1-3, 3-1, 1-1 connectivities through binding uniformed by size and package ceramic elements was developed. Advantage of this technique is the use of piezoceramic which was previously poled under optimal conditions; this is important, because piezoelectric phase embedded in magnetoelectric composite is difficult to pole due to the high electrical conductivity of adjacent ferrite phase. The effect of piezoelectric material type, volume ratio of phases, and linear size of repeating fragment on the dielectric, piezoelectric, and magnetoelectric properties of ν PZT + (1−ν) NiCo0.02Cu0.02Mn0.1Fe1.8O4−δ ( v – volume fraction of piezoelectric, PZT – commercial grades of lead–zirconate–titanate such as PZT-36, PZTNB-1, PZTST-2, PZTTBS-2, PZT-19) composites is studied. It is shown that, with an equal volume ratio of phases, composites based on piezoceramics with high piezoelectric voltage coefficient gij (PZT-36, PZTNB-1) exhibit the most prominent magnetoelectric coupling efficiency. Decrease in the linear size of repeating fragment lΣ also contributes to an increase in Δ E/Δ H coefficient. Given other conditions being equal, 1-1 type composites commonly exhibit the highest values of magnetoelectric coefficient. Maximal values of magnetoelectric coefficient Δ E/Δ H for 0.5 PZT-36 + 0.5 NiCo0.02Cu0.02Mn0.1Fe1.8O4−δ magnetoelectric heterostructures reach ∼500 mV/(cm·Oe) at a frequency of 1 kHz.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
A. K. Kodeary ◽  
S. M. Hamidi

We report an experimental study on the piezophotonic effect of gold and lead zirconate titanate (PbZrTiO3) nanoparticles (NPs) and also their core-shell nanostructures prepared by the laser ablation in liquid method. To obtain these NPs and composite materials, the targets were immersed in deionized water and a polymeric solution of polyvinyl pyrrolidone (PVP) under Nd:YAG laser pulses irradiation. Linear and nonlinear properties of these NPs were studied by optical spectroscopy and the Z-scan technique. Furthermore, tunable nonlinear properties of the NPs were measured under an external electric field under illumination to investigate the piezophotonic effect. Our results show that, at the interface of PZT and Au, due to the Schottky barrier, we have electron/hole recombination prevention, which leads to efficient enhancement in the nonlinear properties.


1997 ◽  
Vol 481 ◽  
Author(s):  
Q. Tan ◽  
D. Viehland

ABSTRACTPronounced nonlinear enhancements in dielectric responses and decreases in phase transformation temperatures were induced under moderate ac fields and high field cycling for La modified lead zirconate titanate (PZT) ceramics. Polarization disordering could be inhibited by introducing acceptor dopants into La modified PZT compositions and by DC bias field. Analysis of the frequency dispersion revealed that the field driven transformation in lower La content PZT is a field assisted activation process, while the transformation in higher La content PZT relaxors is intrinsically a thermal activated process.


2012 ◽  
Vol 189 ◽  
pp. 129-143 ◽  
Author(s):  
Mirza I. Bichurin ◽  
Vladimir M. Petrov ◽  
Roman V. Petrov ◽  
Shashank Priya

Magnetoelectric (ME) coupling in the composites is mediated by the mechanical stress and one would expect orders of magnitude stronger coupling when the frequency of the ac field is tuned to acoustic mode frequencies in the sample than at non-resonance frequencies. A model is presented for the increase in ME coupling in magnetostrictive-piezoelectric bilayers for the longitudinal, radial, and bending modes in the electromechanical resonance region. We solved the equation of medium motion taking into account the magnetostatic and elastostatic equations, constitutive equations, Hooke's law, and boundary conditions. We estimated the ME voltage coefficient for direct ME effect and ME susceptibility for inverse ME coupling. The frequency dependence of the ME voltage coefficient and ME susceptibility reveals a resonance character in the electromechanical resonance region. Then we considered ME interaction in the magneto-acoustic resonance region at the coincidence of electromechanical and magnetic resonance. Variation in the piezomagnetic coefficient with static magnetic field for magnetic layer results in a dependence of ME voltage on applied bias magnetic field. As an example, we considered specific cases of cobalt ferrite or yttrium-ferrum garnet - lead zirconate titanate and nickel/permendur - lead zirconate titanate bilayers. Estimated values of ME voltage coefficient versus frequency profiles are in agreement with data.


Sign in / Sign up

Export Citation Format

Share Document