scholarly journals A SiO2/pHEMA-Based Polymer-Infiltrated Ceramic Network Composite for Dental Restorative Materials

2022 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Hiroshi Ikeda ◽  
Yohei Kawajiri ◽  
Minako Kibune Sodeyama ◽  
Haruka Takesue Yano ◽  
Yuki Nagamatsu ◽  
...  

SiO2-poly(2-hydroxyethyl methacrylate) (pHEMA)-based composites have been widely used as biomaterials owing to their biocompatibility. However, they have not yet been applied as tooth restorative materials because of their poor mechanical properties. In the present paper, we develop a novel SiO2/pHEMA-based composite with a polymer-infiltrated network (PICN) structure for use in dental restorative materials. A mixture of SiO2 nanoparticles and a poly(vinyl alcohol) binder was sintered at 950 °C to fabricate a porous SiO2 block. A monomer mixture containing 70 wt%-HEMA/30 wt%-ethylene glycol dimethacrylate and a benzoyl peroxide initiator was infiltrated into the porous SiO2 block and heat-polymerized to fabricate the SiO2/pHEMA-based composite with a PICN structure. The composite was characterized according to its mechanical properties, surface free energy, and bonding properties with a dental adhesive. The flexural strength was 112.5 ± 18.7 MPa, the flexural modulus was 13.6 ± 3.4 GPa, and the Vickers hardness was 168.2 ± 16.1, which are similar values to human teeth. The surface free energy of the polar component of the composite was 19.6 ± 2.5 mN/m, suggesting that this composite has an active surface for bonding with the adhesive. The composite bonded well to the adhesive, in the presence of a silane coupling agent. The SiO2/pHEMA-based composite was demonstrated to be a potential candidate for dental restorative materials.

2011 ◽  
Vol 7 (3) ◽  
pp. 1160-1165 ◽  
Author(s):  
Stefan Rüttermann ◽  
Taina Trellenkamp ◽  
Nora Bergmann ◽  
Wolfgang H.-M. Raab ◽  
Helmut Ritter ◽  
...  

2003 ◽  
Vol 11 (3) ◽  
pp. 162-167 ◽  
Author(s):  
Linda Wang ◽  
Paulo Henrique Perlatti D'Alpino ◽  
Lawrence Gonzaga Lopes ◽  
José Carlos Pereira

A wide variety of dental products that are launched on the market becomes the correct selection of these materials a difficult task. Although the mechanical properties do not necessarily represent their actual clinical performance, they are used to guide the effects of changes in their composition or processing on these properties. Also, these tests might help somehow the clinician to choose once comparisons between former formulations and new ones, as well as, with the leading brand, are highlighted by manufactures. This paper presents a review of the most important laboratory tests. In this manner, the knowledge of these tests will provide a critical opinion related to the properties of different dental materials.


Author(s):  
K. J. Chun ◽  
C. Y. Kim ◽  
J. Y. Lee

Dental restorative materials including amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy are used to reconstruct damaged teeth, as well as to recover their function. In this study, the mechanical properties of various dental restorative materials were determined using test specimens of identical shape and dimension under the same three-point bending test condition, and the test results were compared to enamel and dentin. The maximum bending force of enamel and dentin was 6.9 ± 2.1 N and 39.7 ± 8.3 N, and the maximum bending deflection was 0.12 ± 0.02 mm and 0.25 ± 0.03 mm, respectively. The maximum bending force of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were 1.9 ± 0.4 N, 2.7 ± 0.6 N, 66.9 ± 4.1 N, 2.7 ± 0.3 N, 19.0 ± 2.0 N, and 121.3 ± 6.8 N, respectively, and the maximum bending deflection was 0.20 ± 0.08 mm, 0.28 ± 0.07 mm, 2.53 ± 0.12 mm, 0.37 ± 0.05 mm, 0.39 ± 0.05 m, and 2.80 ± 0.08 mm, respectively. The dental restorative materials that possessed greater maximum bending force than that of enamel were gold alloy, zirconia, and titanium alloy. Gold alloy and titanium alloy had greater maximum bending force than dentin. The dental restorative materials that possessed greater maximum bending deflection than that of enamel were all of the dental restorative materials, and the dental restorative materials that possessed greater maximum bending deflection than that of dentin were all of the dental restorative materials except amalgam. The appropriate dental restorative materials for enamel are gold alloy and zirconia and for dentin is gold alloy concerning the maximum bending force and the maximum bending deflection. These results are expected to aid dentists in their choice of better clinical treatment and to contribute to the development of dental restorative materials that possess properties that are most similar to the mechanical properties of dental hard tissue.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 332 ◽  
Author(s):  
Loredana Tammaro ◽  
Anna Di Salle ◽  
Anna Calarco ◽  
Ilenia De Luca ◽  
Francesco Riccitiello ◽  
...  

Resin-based composites are widely used as dental restorative materials due to their excellent properties. They must have high modulus, high hardness, and be chemically inert while minimizing moisture uptake. To fulfill these higher standard prerequisites and properties, continuous improvements in each of their components are required. This study develops novel composites with multiple biofunctions. Light-cured Bis-GMA/TEGDMA dental resin (RK)/layered double hydroxide intercalated with fluoride ions (LDH-F)/calcium bentonite (Bt) hybrid composites were prepared. The loading ratio of LDH-F to Bt was varied, ranging from 2.5/2.5 to 10/10 parts per hundred RK and structural, mechanical, and biological properties were studied. The incorporation of even small mass fractions (e.g., 2.5 wt% of LDH-F and 2.5 wt% of Bt) in RK dental resin significantly improved the mechanical properties of the pristine resin. The synthetized materials showed antibacterial and antibiofilm effects against three bacterial strains isolated from healthy volunteers’ saliva (Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis) without affecting its ability to induce dental pulp stem cells differentiation into odontoblast-like cells. The capability to balance between the antibiofilm activity and dental pulp stem cells differentiation in addition with improved mechanical properties make these materials a promising strategy in preventive and restorative dentistry.


2019 ◽  
Vol 185 (5-6) ◽  
pp. e831-e838
Author(s):  
David J Lemon ◽  
Wen Chen ◽  
Trevor Smith ◽  
April A Ford ◽  
Steven X Moffett ◽  
...  

Abstract Introduction Dental readiness, one critical component of medical readiness, is adversely impacted by dental emergencies. Many dental emergencies require restorative materials such as glass ionomers, resins, and zinc oxide eugenols to remedy them. The Authorized Dental Allowance List (ADAL) and Authorized Medical Allowance List (AMAL) contain the equipment and materials used by Navy dentists to treat Sailors and Marines. These supplies are subjected to harsh storage conditions on deployments. Much is known about how materials behave when stored at room temperature, but less is known about how their properties are affected after exposure to high temperatures and humidity. We subjected five dental restorative materials to storage in aggravated conditions, and then tested them to determine which products are more robust. Materials and Methods Unopened packages of Fuji Triage, Fuji IX GP (both GC America Inc., Alsip, Illinois), TPH Spectra ST Low Viscosity, Intermediate Restorative Material (both Dentsply Sirona, York, Pennsylvania), and Herculite XRV (Kerr Corporation, Orange, California) were exposed to 0, 5, or 10 days’ storage at 30–60°C with 95% relative humidity. After storage in these aggravated conditions, we tested the compressive strength, hardness, elastic modulus, flexural strength, flexural modulus, sorption, and solubility of each material. Results The physical properties of all materials were affected by storage in aggravated conditions, though the properties of some materials degraded more than others. Both glass ionomers, Fuji Triage (P = 0.0012) and Fuji IX GP (P = 0.0031), and the composite Herculite XRV (P = 0.0253) lost compressive strength after 5 or 10 days in aggravated conditions. The hardness values for all materials were affected (P < 0.05) by the aggravated conditions, though the elastic modulus of TPH Spectra was not affected (P > 0.05). None of the materials lost flexural strength (P > 0.05) or had changes in their flexural modulus (P > 0.05). The water sorption behavior of Fuji Triage (P = 0.0426) and Fuji IX GP (P = 0.0201) changed after 10 days of aggravated storage, and the solubility of all materials was altered by the harsh conditions. Conclusion Some materials degrade more than others in aggravated conditions. Both resin composite materials were more resistant to high temperatures and humidity levels than the glass ionomers tested. These changes in physical characteristics should be considered when reviewing or optimizing the ADAL/AMAL for different projected operational environments.


Sign in / Sign up

Export Citation Format

Share Document