chewing simulation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 32)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
eaeldwakhly not provided

This study was conducted to assess the surface characteristics in terms of roughness of two CAD/CAM (Computer-Aided-Design/Computer-Aided Manufacturing)restorative material spre and post chewing simulation exposure. Methods: Specimens were prepared from two CAD/CAM ceramic materials: Cerec Blocs C and IPS e-max ZirCAD. A total of 10 disks were prepared for each study group. 3D optical noncontact surface profiler was used to test the surface roughness (ContourGT, Bruker, Campbell, CA, USA). A silicone mold was used to fix the individual samples using a self-curing resin. Surface roughness (SR) was examined pre and post exposure to chewing simulation. 480,000 simulated chewing cycles were conducted to mimic roughly two years of intraoral clinical service. The results data was first tested for normality and equal variance (Levene’s test >0.05) then examined with paired and independent sample t-test at a significance level of (p < 0.05). Results:The two CAD-CAM materials tested exhibited increased surface roughness from baseline. The highest mean surface roughness was observed in Cerec blocs C group after chewing simulation (2.34 µm± 0.62 µm). Whereas the lowest surface roughness was observed in IPS e.max ZirCAD group before chewing simulation (0.42 µm± 0.16 µm). Both study groups exhibited significantly different surface roughness values (p< 0.05). There was a statistically higher surface roughness values after the chewing simulation in Cerec blocs C when compared to IPS e.max ZirCAD groups (p = 0.000).Conclusion:Even though both tested CAD/CAM materials differ in recorded surface roughness values, results were within clinically accepted values.


Author(s):  
Marie-Therese Heberer ◽  
Hubert C. Roggendorf ◽  
Franz-Josef Faber ◽  
Nicolai-Alexander Lawrenz ◽  
Roland Frankenberger ◽  
...  

Abstract Objectives The aim of this study was to investigate whether file design and taper significantly influence microcrack initiation during machine preparation. Materials and methods Sixty extracted teeth with straight single canals were selected. The teeth were randomly assigned to four groups based on their root canal anatomy and the corresponding NiTi rotary file system (I, Mtwo; II, ProTaper Universal; III, F6 SkyTaper; control, no preparation and filling). The root canals of the experimental groups were filled using the single-cone technique. The tested teeth were all subjected to a mechanical chewing simulation with flat lead loading over a period of 3 years (corresponding to 150,000 cycles). The teeth were checked for dentinal defects (accumulative crack growth in length) under the digital microscope (Keyence VHX-5000) at time 0 (baseline prior to chewing simulation) and after 3, 6, 12, 24, and 36 months of loading. The cumulative crack increase was statistically analyzed using the Kruskal–Wallis test, Jonckheere–Terpstra test, and the Wilcoxon rank-sum test. The significance was set at p < 0.05. Results In contrast to preparation with greater-tapered instruments, ProTaper Universal (group II) and F6 SkyTaper (group III) instrumentation with the smaller tapered Mtwo files (group I) showed less accumulative propagation of craze lines (p < 0.05) at all time points. Conclusion Instruments with greater taper for root canal instrumentation should be used with care to avoid negative long-term effects in the form of propagation of dentinal defects over time. A positive cutting-edge angle and a smaller taper have a positive effect on a lower craze line development. Clinical relevance Instruments with a positive cutting-edge angle and a smaller taper are beneficial for the long-term preservation of dentinal tooth structure.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3469
Author(s):  
Franziska Hensel ◽  
Andreas Koenig ◽  
Hans-Martin Doerfler ◽  
Florian Fuchs ◽  
Martin Rosentritt ◽  
...  

The aim of this in vitro study was to analyse the performance of CAD/CAM resin-based composites for the fabrication of long-term temporary fixed dental prostheses (FDP) and to compare it to other commercially available alternative materials regarding its long-term stability. Four CAD/CAM materials [Structur CAD (SC), VITA CAD-Temp (CT), Grandio disc (GD), and Lava Esthetic (LE)] and two direct RBCs [(Structur 3 (S3) and LuxaCrown (LC)] were used to fabricate three-unit FDPs. 10/20 FDPs were subjected to thermal cycling and mechanical loading by chewing simulation and 10/20 FDPs were stored in distilled water. Two FDPs of each material were forwarded to additional image diagnostics prior and after chewing simulation. Fracture loads were measured and data were statistically analysed. SC is suitable for use as a long-term temporary (two years) three-unit FDP. In comparison to CT, SC featured significantly higher breaking forces (SC > 800 N; CT < 600 N) and the surface wear of the antagonists was (significantly) lower and the abrasion of the FDP was similar. The high breaking forces (1100–1327 N) of GD and the small difference compared to LE regarding flexural strength showed that the material might be used for the fabrication of three-unit FDPs. With the exception of S3, all analysed direct or indirect materials are suitable for the fabrication of temporary FDPs.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2348
Author(s):  
Pedro Molinero-Mourelle ◽  
Rocio Cascos-Sanchez ◽  
Burak Yilmaz ◽  
Walter Yu Hang Lam ◽  
Edmond Ho Nang Pow ◽  
...  

The aim of this in vitro study was to investigate the microgaps at the implant–abutment interface when zirconia (Zr) and CAD/CAM or cast Co–Cr abutments were used. Methods: Sixty-four conical connection implants and their abutments were divided into four groups (Co–Cr (milled, laser-sintered and castable) and Zirconia (milled)). After chewing simulation (300,000 cycles, under 200 N loads at 2 Hz at a 30° angle) and thermocycling (10,000 cycles, 5 to 50 °C, dwelling time 55 s), the implant–abutment microgap was measured 14 times at each of the four anatomical aspects on each specimen by using a scanning electron microscope (SEM). Kruskal–Wallis and pair-wise comparison were used to analyze the data (α = 0.05). Results: The SEM analysis revealed smaller microgaps with Co–Cr milled abutments (0.69–8.39 μm) followed by Zr abutments (0.12–6.57 μm), Co–Cr sintered (7.31–25.7 μm) and cast Co–Cr (1.68–85.97 μm). Statistically significant differences were found between milled and cast Co–Cr, milled and laser-sintered Co–Cr, and between Zr and cast and laser-sintered Co–Cr (p < 0.05). Conclusions: The material and the abutment fabrication technique affected the implant–abutment microgap magnitude. The Zr and the milled Co–Cr presented smaller microgaps. Although the CAD/CAM abutments presented the most favorable values, all tested groups had microgaps within a range of 10 to 150 μm.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2133
Author(s):  
Markus Wertz ◽  
Florian Fuchs ◽  
Hieronymus Hoelzig ◽  
Julia Maria Wertz ◽  
Gert Kloess ◽  
...  

The effect of dental technical tools on the phase composition and roughness of 3/4/5 yttria-stabilized tetragonal zirconia polycrystalline (3y-/4y-/5y-TZP) for application in prosthetic dentistry was investigated. Additionally, the X-ray diffraction methods of Garvie-Nicholson and Rietveld were compared in a dental restoration context. Seven plates from two manufacturers, each fabricated from commercially available zirconia (3/4/5 mol%) for application as dental restorative material, were stressed by different dental technical tools used for grinding and polishing, as well as by chewing simulation and thermocycling. All specimens were examined via laser microscopy (surface roughness) and X-ray diffraction (DIN EN ISO 13356 and the Rietveld method). As a result, the monoclinic phase fraction was halved by grinding for the 3y-TZP and transformed entirely into one of the tetragonal phases by polishing/chewing for all specimens. The tetragonal phase t is preferred for an yttria content of 3 mol% and phase t″ for 5 mol%. Mechanical stress, such as polishing or grinding, does not trigger low-temperature degradation (LTD), but it fosters a phase transformation from monoclinic to tetragonal under certain conditions. This may increase the translucency and deteriorate the mechanical properties to some extent.


2021 ◽  
Vol 2 ◽  
Author(s):  
Isadora Martini Garcia ◽  
Abdulrahman A. Balhaddad ◽  
Noorhan Aljuboori ◽  
Maria Salem Ibrahim ◽  
Lamia Mokeem ◽  
...  

Bioactive materials can reduce caries lesions on the marginal sealed teeth by providing the release of ions, such as calcium, phosphate, fluoride, zinc, magnesium, and strontium. The presence of such ions affects the dissolution balance of hydroxyapatite, nucleation, and epitaxial growth of its crystals. Previous studies mostly focused on the ion-releasing behavior of bioactive materials. Little is known about their wear behavior sealed tooth under mastication. This study aimed to evaluate the wear behavior and surface quality of dental bioactive resins under a simulated chewing model and compare them with a resin without bioactive agents. Three bioactive resins (Activa, BioCoat, and Beautifil Flow-Plus) were investigated. A resin composite without bioactive agents was used as a control group. Each resin was applied to the occlusal surface of extracted molars and subjected to in vitro chewing simulation model. We have assessed the average surface roughness (Ra), maximum high of the profile (Rt), and maximum valley depth (Rv) before and after the chewing simulation model. Vickers hardness and scanning electron microscopy (SEM) also analyzed the final material surface quality). Overall, all groups had increased surface roughness after chewing simulation. SEM analysis revealed a similar pattern among the materials. However, the resin with polymeric microcapsules doped with bioactive agents (BioCoat) showed increased surface roughness parameters. The material with Surface Pre-reacted Glass Ionomer (Beautifil Flow-Plus) showed no differences compared to the control group and improved microhardness. The addition of bioactive agents may influence surface properties, impairing resin composites' functional and biological properties. Future studies are encouraged to analyze bioactive resin composites under high chemical and biological challenges in vitro with pH cycles or in situ models.


2021 ◽  
Vol 13 (3) ◽  
pp. 144
Author(s):  
Gerelmaa Myagmar ◽  
Jae-Hyun Lee ◽  
Jin-Soo Ahn ◽  
In-Sung Luke Yeo ◽  
Hyung-In Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document