scholarly journals Endurance of the Dorsal and Ventral Muscles in the Neck

2020 ◽  
Vol 5 (3) ◽  
pp. 47
Author(s):  
Cameron M. Liss ◽  
Adeola A. Sanni ◽  
Kevin K. McCully

Endurance of the muscles of the neck are rarely studied. This study measured the endurance index (EI) of the sternocleidomastoid (SCM) and upper trapezius muscles of the neck (trap). The vastus lateralis (VL) was used for comparison. Skeletal muscle endurance of twelve healthy subjects, age 19–22 years, were tested on their SCM and trap in random order on one day, VL was tested on a separate day. Participants were tested in the supine position for the SCM and VL muscles and the prone position for the trap. Muscle contractions consisted of a 5 Hz twitch electrical stimulation for 5 min. Muscle acceleration (resultant vector) was measured using a triaxial accelerometer. EI was the ending acceleration as a percentage of the maximal acceleration. The endurance index (EI) for the SCM, trap, and VL was 42.3 ± 13.0%, 42.3 ± 20.2%, and 92.9 ± 11.0%, respectively. The EI of the VL was significantly higher than the EI of the SCM (t(2,22) = 10.33, p < 0.001) and the trap (t(2,22) = 7.625, p < 0.001). The EI was not different between the SCM and the trap muscle (t(2,22) = 0.004, p = 0.997). In conclusion, the neck muscles had much less endurance than the muscles in the leg and could make fatigued athletes more susceptible to concussions caused by head impacts.

2021 ◽  
Vol 9 (4) ◽  
Author(s):  
Olivia Hooks ◽  
Kevin McCully

Previous studies have used an accelerometer to evaluate muscle endurance. This study compared endurance index values using a video phone to an accelerometer. Eleven healthy subjects (19-22yrs) were electrically stimulated for 5 minutes at 5 Hz on the hamstring muscles. Four 10s videos were captured at 1080p and 60fps (~283,000 pixels) with the phone. Videos were analyzed using sequential correlations (consecutive 1-2, or consecutive skipping an image 1–3) of the video images between the electrodes. The magnitude of the decrease in the correlation was used to indicate movement. A triaxial accelerometer measured the resultant vector of the movements and the decrease in acceleration was used to indicate fatigue. Analysis using 1-3 produced higher delta R2 values compared to 1-2 (0.038+0.004; 0.020+0.001). Endurance index was 72.1+19.4% for the accelerometer and 71.1+18.6% for the phone images, p=0.64. The mean difference between the methods was not different from zero and the 90% confidence interval was within 5%. In conclusion, the consecutive correlations method detected decreases in movement due to fatigue. The video method provided equivalent values to the previously established accelerometer method to measure muscle endurance. These results support the use of video to assess muscle acceleration during muscle specific endurance test.


2006 ◽  
Vol 290 (5) ◽  
pp. E849-E855 ◽  
Author(s):  
Vernon G. Coffey ◽  
Anthony Shield ◽  
Benedict J. Canny ◽  
Kate A. Carey ◽  
David Cameron-Smith ◽  
...  

Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 × 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor-γ coactivator-1α (ET ∼8.5-fold, ST ∼10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET ∼26-fold, ST ∼39-fold), vascular endothelial growth factor (VEGF; ET ∼4.5-fold, ST ∼4-fold), and muscle atrophy F-box protein (MAFbx) (ET ∼2-fold, ST ∼0.4-fold) mRNA increased in both groups, whereas MyoD (∼3-fold), myogenin (∼0.9-fold), and myostatin (∼2-fold) mRNA increased in ET but not in ST ( P < 0.05). After resistance exercise PDK-4 (∼7-fold, P < 0.01) and MyoD (∼0.7-fold) increased, whereas MAFbx (∼0.7-fold) and myostatin (∼0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.


2003 ◽  
Vol 13 (3) ◽  
pp. 294-302 ◽  
Author(s):  
Darren G. Burke ◽  
Philip D. Chilibeck ◽  
Gianni Parise ◽  
Mark A. Tarnopolsky ◽  
Darren G. Candow

α-lipoic acid has been found to enhance glucose uptake into skeletal muscle in animal models. Studies have also found that the co-ingestion of carbohydrate along with creatine increases muscle creatine uptake by a process related to insulin-stimulated glucose disposal. The purpose of this study was to determine the effect of α-lipoic acid on human skeletal muscle creatine uptake by directly measuring intramuscular concentrations of creatine, phosphocreatine, and ad-enosine triphosphate when creatine monohydrate was co-ingested with α-lipoic acid. Muscle biopsies were acquired from the vastus lateralis m. of 16 male subjects (18–32 y) before and after the experimental intervention. After the initial biopsy, subjects ingested 20 g · d−1 of creatine monohydrate, 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose, or 20 g · d−1 of creatine monohydrate + 100 g · d−1 of sucrose + 1000 mg · d−1 of α-lipoic acid for 5 days. Subjects refrained from exercise and consumed the same balanced diet for 7 days. Body weight increased by 2.1% following the nutritional intervention, with no differences between the groups. There was a significant increase in total creatine concentration following creatine supplementation, with the group ingesting α-lipoic acid showing a significantly greater increase (p < .05) in phosphocreatine (87.6 → 106.2 mmol · kg−1 dry mass [dm]) and total creatine (137.8 → 156.8 mmol · kg−1 dm). These findings indicate that co-ingestion of α-lipoic acid with creatine and a small amount of sucrose can enhance muscle total creatine content as compared to the ingestion of creatine and sucrose or creatine alone.


2004 ◽  
Vol 18 (2) ◽  
pp. 226-231 ◽  
Author(s):  
Douglas J. Mahoney ◽  
Kate Carey ◽  
Ming-Hua Fu ◽  
Rodney Snow ◽  
David Cameron-Smith ◽  
...  

Studies examining gene expression with RT-PCR typically normalize their mRNA data to a constitutively expressed housekeeping gene. The validity of a particular housekeeping gene must be determined for each experimental intervention. We examined the expression of various housekeeping genes following an acute bout of endurance (END) or resistance (RES) exercise. Twenty-four healthy subjects performed either a interval-type cycle ergometry workout to exhaustion (∼75 min; END) or 300 single-leg eccentric contractions (RES). Muscle biopsies were taken before exercise and 3 h and 48 h following exercise. Real-time RT-PCR was performed on β-actin, cyclophilin (CYC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and β2-microglobulin (β2M). In a second study, 10 healthy subjects performed 90 min of cycle ergometry at ∼65% of V̇o2 max, and we examined a fifth housekeeping gene, 28S rRNA, and reexamined β2M, from muscle biopsy samples taken immediately postexercise. We showed that CYC increased 48 h following both END and RES exercise (3- and 5-fold, respectively; P < 0.01), and 28S rRNA increased immediately following END exercise (2-fold; P = 0.02). β-Actin trended toward an increase following END exercise (1.85-fold collapsed across time; P = 0.13), and GAPDH trended toward a small yet robust increase at 3 h following RES exercise (1.4-fold; P = 0.067). In contrast, β2M was not altered at any time point postexercise. We conclude that β2M and β-actin are the most stably expressed housekeeping genes in skeletal muscle following RES exercise, whereas β2M and GAPDH are the most stably expressed following END exercise.


2017 ◽  
Vol 122 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Leryn J. Reynolds ◽  
Daniel P. Credeur ◽  
Camila Manrique ◽  
Jaume Padilla ◽  
Paul J. Fadel ◽  
...  

Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)−1·min−1] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM−1·min−1) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P < 0.05). peNOS/eNOS content was higher in Lean under basal conditions and, although not increased by insulin, remained higher in Lean during the insulin clamp than in obese T2D ( P < 0.05). ET-1 mRNA and peptide were 2.25 ± 0.50- and 1.52 ± 0.11-fold higher in obese T2D compared with Lean at baseline, and ET-1 peptide remained 2.02 ± 1.9-fold elevated in obese T2D after insulin infusion ( P < 0.05) but did not increase with insulin in either group ( P > 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 ( P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients. NEW & NOTEWORTHY Although impairments in endothelial signaling are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), human studies examining these links are limited. We provide the first measures of nitric oxide synthase and endothelin-1 expression from skeletal muscle tissue containing native microvessels in individuals with and without T2D before and during insulin stimulation. Higher basal skeletal muscle expression of endothelin-1 and reduced endothelial nitric oxide phosphorylation (peNOS)/eNOS may contribute to reduced insulin-stimulated blood flow in obese T2D patients.


1999 ◽  
Vol 87 (1) ◽  
pp. 465-470 ◽  
Author(s):  
J. Bejma ◽  
L. L. Ji

Reactive oxygen species (ROS) are implicated in the mechanism of biological aging and exercise-induced oxidative damage. The present study examined the effect of an acute bout of exercise on intracellular ROS production, lipid and protein peroxidation, and GSH status in the skeletal muscle of young adult (8 mo, n = 24) and old (24 mo, n = 24) female Fischer 344 rats. Young rats ran on a treadmill at 25 m/min and 5% grade until exhaustion (55.4 ± 2.7 min), whereas old rats ran at 15 m/min and 5% grade until exhaustion (58.0 ± 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of ROS and other intracellular oxidants production in the homogenate of deep vastus lateralis, was 77% ( P < 0.01) higher in rested old vs. young rats. Exercise increased DCFH oxidation by 38% ( P < 0.09) and 50% ( P < 0.01) in the young and old rats, respectively. DCFH oxidation in isolated deep vastus lateralis mitochondria with site 1 substrates was elevated by 57% ( P < 0.01) in old vs. young rats but was unaltered with exercise. Significantly higher DCFH oxidation rate was also found in aged-muscle mitochondria ( P < 0.01), but not in homogenates, when ADP, NADPH, and Fe3+ were included in the assay medium without substrates. Lipid peroxidation in muscle measured by malondialdehyde content showed no age effect, but was increased by 20% ( P < 0.05) with exercise in both young and old rats. Muscle protein carbonyl formation was unaffected by either age or exercise. Mitochondrial GSH/ GSSG ratio was significantly higher in aged vs. young rats ( P < 0.05), whereas exercise increased GSSG content and decreased GSH/GSSG in both age groups ( P < 0.05). These data provided direct evidence that oxidant production in skeletal muscle is increased in old age and during prolonged exercise, with both mitochondrial respiratory chain and NADPH oxidase as potential sources. The alterations of muscle lipid peroxidation and mitochondrial GSH status were consistent with these conclusions.


1989 ◽  
Vol 66 (1) ◽  
pp. 72-78 ◽  
Author(s):  
L. Martineau ◽  
I. Jacobs

The effects of intramuscular glycogen availability on human temperature regulation were studied in eight seminude subjects immersed in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each subject was immersed three times over a 3-wk period. Each immersion followed 2.5 days of a specific dietary and/or exercise regimen designed to elicit low (L), normal (N), or high (H) glycogen levels in large skeletal muscle groups. Muscle glycogen concentration was determined in biopsies taken from the vastus lateralis muscle before and after each immersion. Intramuscular glycogen concentration before the immersion was significantly different among the L, N, and H trials (P less than 0.01), averaging 247 +/- 15, 406 +/- 23, and 548 +/- 42 (SE) mmol glucose units.kg dry muscle-1, respectively. The calculated metabolic heat production during the first 30 min of immersion was significantly lower during L compared with N or H (P less than 0.05). The rate at which Tre decreased was more rapid during the L immersion than either N or H (P less than 0.05), and the time during the immersion at which Tre first began to decrease also appeared sooner during L than N or H. The results suggest that low skeletal muscle glycogen levels are associated with more rapid body cooling during water immersion in humans. Higher than normal muscle glycogen levels, however, do not increase cold tolerance.


1995 ◽  
Vol 269 (3) ◽  
pp. E458-E468 ◽  
Author(s):  
C. T. Putman ◽  
N. L. Jones ◽  
L. C. Lands ◽  
T. M. Bragg ◽  
M. G. Hollidge-Horvat ◽  
...  

The regulation of the active form of pyruvate dehydrogenase (PDHa) and related metabolic events were examined in human skeletal muscle during repeated bouts of maximum exercise. Seven subjects completed three consecutive 30-s bouts of maximum isokinetic cycling, separated by 4 min of recovery. Biopsies of the vastus lateralis were taken before and immediately after each bout. PDHa increased from 0.45 +/- 0.15 to 2.96 +/- 0.38, 1.10 +/- 0.11 to 2.91 +/- 0.11, and 1.28 +/- 0.18 to 2.82 +/- 0.32 mmol.min-1.kg wet wt-1 during bouts 1, 2, and 3, respectively. Glycolytic flux was 13-fold greater than PDHa in bouts 1 and 2 and 4-fold greater during bout 3. This discrepancy between the rate of pyruvate production and oxidation resulted in substantial lactate accumulation to 89.5 +/- 11.6 in bout 1, 130.8 +/- 13.8 in bout 2, and 106.6 +/- 10.1 mmol/kg dry wt in bout 3. These events coincided with an increase in the mitochondrial oxidation state, as reflected by a fall in mitochondrial NADH/NAD, indicating that muscle lactate production during exercise was not an O2-dependent process in our subjects. During exercise the primary factor regulating PDHa transformation was probably intracellular Ca2+. In contrast, the primary regulatory factors causing greater PDHa during recovery were lower ATP/ADP and NADH/NAD and increased concentrations of pyruvate and H+. Greater PDHa during recovery facilitated continued oxidation of the lactate load between exercise bouts.


1995 ◽  
Vol 269 (6) ◽  
pp. H1949-H1954 ◽  
Author(s):  
R. M. McAllister ◽  
M. D. Delp ◽  
K. A. Thayer ◽  
M. H. Laughlin

Hypothyroidism is characterized by exercise intolerance. We hypothesized that active muscle blood flow during in vivo exercise is inadequate in the hypothyroid state. Additionally, we hypothesized that endurance exercise training would restore normal blood flow during acute exercise. To test these hypotheses, rats were made hypothyroid (Hypo) over 3-4 mo with propylthiouracil. A subset of Hypo rats was trained (THypo) on a treadmill at 30 m/min (15% grade) for 60 min/day 5 days/wk over 10-15 wk. Hypothyroidism was evidenced by approximately 80% reductions in plasma triiodothyronine levels in Hypo and THypo and by 40-50% reductions in citrate synthase activities in high oxidative muscles in Hypo compared with euthyroid (Eut) rats. Training efficacy was indicated by increased (25-100%) citrate synthase activities in muscles of THypo vs. Hypo. Regional blood flows were determined by the radiolabeled microsphere method before exercise and at 1-2 min of treadmill running at 15 m/min (0% grade). Preexercise muscle blood flows were generally similar among groups. During exercise, however, flows were lower in Hypo than in Eut for high oxidative muscles such as the red section of vastus lateralis [277 +/- 24 and 153 +/- 13 (SE) ml.min-1.100 g-1 for Eut and Hypo, respectively; P < 0.01] and vastus intermedius (317 +/- 32 and 187 +/- 20 ml.min-1.100 g-1 for Eut and Hypo, respectively; P < 0.01) muscles. Training (THypo) did not normalize these flows (168 +/- 24 and 181 +/- 24 ml.min-1.100 g-1 for red section of vastus lateralis and vastus intermedius muscles, respectively). Blood flows to low oxidative muscle, such as the white section of vastus lateralis muscle, were similar among groups (21 +/- 5, 25 +/- 4, and 34 +/- 7 ml.min-1.100 g-1 for Eut, Hypo, and THypo, respectively; P = NS). These findings indicate that hypothyroidism is associated with reduced blood flow to skeletal muscle during exercise, suggesting that impaired delivery of nutrients to and/or removal of metabolites from skeletal muscle contributes to the poor exercise tolerance characteristic of hypothyroidism.


Sign in / Sign up

Export Citation Format

Share Document