scholarly journals Reliability of an Integrated Inertial Sensor for the Continuous Measurement of Active Cervical Range of Motion in a Group of Younger and Elderly Individuals

2020 ◽  
Vol 5 (3) ◽  
pp. 58
Author(s):  
Stefano Gobbo ◽  
Barbara Vendramin ◽  
Enrico Roma ◽  
Federica Duregon ◽  
Danilo Sales Bocalini ◽  
...  

The aim of this study was to evaluate the test–retest reliability of an integrated inertial sensor (IIS) for cervical range of motion assessment. An integrated inertial sensor was placed on the forehead center of thirty older adults (OA) and thirty younger adults (YA). Participants had to perform three continuous rotations, lateral bandings and flexion–extensions with their head. Test–retest reliability was assessed after 7 days. YA showed moderate to good agreement for rotation (0.54–0.82), lateral bending (0.74–0.8), and flexion–extension (0.74–0.81) movements and poor agreement for zero point (ZP). OA showed moderate to good agreement for rotation (0.65–0.86), good to excellent agreement in lateral bending (0.79–0.92), and poor to moderate agreement for flexion–extension (0.37–0.72). Zero point showed poor to moderate agreement. In conclusion, we can affirm that this IIS is a reliable device for cervical range of motion assessment in young and older adults; on the contrary, the ZP seems to be unreliable and the addition of an external reference point could help the subject to solve this shortcoming and reduce possible biases.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11228
Author(s):  
Germán Cánovas-Ambit ◽  
José A. García-Vidal ◽  
Rodrigo Martín-San Agustín ◽  
Aurelio Arenas Dalla-Vecchia ◽  
Mariana Sánchez-Barbadora ◽  
...  

Background Neck pain has a high annual incidence and decreases the cervical active range of motion (ROM). Clinicians use various methods to evaluate cervical range of motion (CROM) that some of them have also been proposed to give instant feedback. Accordingly, this study aimed to examine the validity and reliability of Veloflex (VF) to measure the CROM by comparison with the cervical range of motion (CROM) device, and to examine their test-retest reliability. Methods Thirty-eight healthy and 20 symptomatic participants were evaluated. Cervical flexion-extension, side bending, and rotations were tested in two sessions, first by the CROM and VF and in the second only with the VF. To evaluate the concurrent validity and agreement between CROM and VF, Pearson correlation coefficient (r) and Bland–Altmann plots were used. Reliability were evaluated using intra-class correlation (ICC), standard error of measurement (SEM) and minimal detectable change (MDC). Results CROM and VF showed excellent correlation for all movements (r > 0.960). Both devices provided small mean ‘bias’ (≤1.29%) in all movements regarding CROM measures. The intra-rater and inter-rater reliability of the VF was excellent (ICC > 0.98). SEMs ranging from 0.72% to 2.38% and the MDC ranging from 1.22° to 2.60° in all participants. The results support the validity and reliability of VF to measure CROM. For its use, with a basic training is enough to get reliable measurements.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1162
Author(s):  
Hogene Kim ◽  
Sangwoo Cho ◽  
Hwiyoung Lee

This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test–retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle’s range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = −0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.


Author(s):  
Héctor E Jaramillo S

The annulus fibrosus has substantial variations in its geometrical properties (among individuals and between levels), and plays an important role in the biomechanics of the spine. Few works have studied the influence of the geometrical properties including annulus area, anterior / posterior disc height, and over the range of motion, but in general these properties have not been reported in the finite element models. This paper presents a probabilistic finite element analyses (Abaqus 6.14.2) intended to assess the effects of the average disc height ( hp) and the area ( A) of the annulus fibrosus on the biomechanics of the lumbar spine. The annulus model was loaded under flexion, extension, lateral bending, and axial rotation and analyzed for different combinations of hpand A in order to obtain their effects over the range of motion. A set of 50 combinations of hp(mean = 18.1 mm, SD = 3.5 mm) and A (mean = 49.8%, SD = 4.6%) were determined randomly according to a normal distribution. A Yeoh energy function was used for the matrix and an exponential function for the fibers. The range of motion was more sensitive to hpthan to A. With regard to the range of motion the segment was more sensitive in the following order: flexion, axial rotation, extension, and lateral bending. An increase of the hpproduces an increase of the range of motion, but this decreases when A increases. Comparing the range of motion with the experimental data, on average, 56.0% and 73.0% of the total of data were within the experimental range for the L4–L5 and L5–S1 segments, respectively. Further, an analytic equation was derived to obtain the range of motion as a function of the hpand A. This equation can be used to calibrate a finite element model of the spine segment, and also to understand the influence of each geometrical parameter on the range of motion.


2019 ◽  
Vol 10 (8) ◽  
pp. 973-981
Author(s):  
Raymond J. Hah ◽  
Ram Alluri ◽  
Paul A. Anderson

Study Design: Biomechanics study. Objectives: To evaluate the biomechanical advantage of interfacet allograft spacers in an unstable single-level and 2-level anterior cervical discectomy and fusion (ACDF) pseudoarthrosis model. Methods: Nine single-level and 8 two-level ACDF constructs were tested. Range of motion in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) at 1.5 N m were collected in 4 testing configurations: (1) intact spine, (2) ACDF with interbody graft and plate/screw, (3) ACDF with interbody graft and plate/loosened screws (loose condition), and (4) ACDF with interbody graft and plate/loosened screws supplemented with interfacet allograft spacers (rescue condition). Results: All fixation configurations resulted in statistically significant decreases in range of motion in all bending planes compared with the intact spine ( P < .05). One Level. Performing ACDF with interbody graft and plate on the intact spine reduced FE, LB, and AR 60.0%, 64.9%, and 72.9%, respectively. Loosening the ACDF screws decreased these reductions to 40.9%, 44.6%, and 52.1%. The addition of interfacet allograft spacers to the loose condition increased these reductions to 74.0%, 84.1%, and 82.1%. Two Level. Performing ACDF with interbody graft and plate on the intact spine reduced FE, LB, and AR 72.0%, 71.1%, and 71.2%, respectively. Loosening the ACDF screws decreased these reductions to 55.4%, 55.3%, and 51.3%. The addition of interfacet allograft spacers to the loose condition significantly increased these reductions to 82.6%, 91.2%, and 89.3% ( P < .05). Conclusions: Supplementation of a loose ACDF construct (pseudarthrosis model) with interfacet allograft spacers significantly increases stability and has potential applications in treating cervical pseudarthrosis.


2008 ◽  
Vol 63 (suppl_4) ◽  
pp. ONS303-ONS308 ◽  
Author(s):  
Şeref Doğan ◽  
Seungwon Baek ◽  
Volker K.H. Sonntag ◽  
Neil R. Crawford

Abstract Objective: To evaluate the differences in spinal stability and stabilizing potential of instrumentation after cervical corpectomy and spondylectomy. Methods: Seven human cadaveric specimens were tested: 1) intact; 2) after grafted C5 corpectomy and anterior C4–C6 plate; 3) after adding posterior C4–C6 screws/rods; 4) after extending posteriorly to C3–C7; 5) after grafted C5 spondylectomy, anterior C4–C6 plate, and posterior C4–C6 screws/rods; and 6) after extending posteriorly to C3–C7. Pure moments induced flexion, extension, lateral bending, and axial rotation; angular motion was recorded optically. Results: After corpectomy, anterior plating alone reduced the angular range of motion to a mean of 30% of normal, whereas added posterior short- or long-segment hardware reduced range of motion significantly more (P &lt; 0.003), to less than 5% of normal. Constructs with posterior rods spanning C3–C7 were stiffer than constructs with posterior rods spanning C4–C6 during flexion, extension, and lateral bending (P &lt; 0.05), but not during axial rotation (P &gt; 0.07). Combined anterior and C4–C6 posterior fixation exhibited greater stiffness after corpectomy than after spondylectomy during lateral bending (P = 0.019) and axial rotation (P = 0.001). Combined anterior and C3–C7 posterior fixation exhibited greater stiffness after corpectomy than after spondylectomy during extension (P = 0.030) and axial rotation (P = 0.0001). Conclusion: Circumferential fixation provides more stability than anterior instrumentation alone after cervical corpectomy. After corpectomy or spondylectomy, long circumferential instrumentation provides better stability than short circumferential fixation except during axial rotation. Circumferential fixation more effectively prevents axial rotation after corpectomy than after spondylectomy.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5143 ◽  
Author(s):  
Lukas Adamowicz ◽  
Reed Gurchiek ◽  
Jonathan Ferri ◽  
Anna Ursiny ◽  
Niccolo Fiorentino ◽  
...  

Wearable sensor-based algorithms for estimating joint angles have seen great improvements in recent years. While the knee joint has garnered most of the attention in this area, algorithms for estimating hip joint angles are less available. Herein, we propose and validate a novel algorithm for this purpose with innovations in sensor-to-sensor orientation and sensor-to-segment alignment. The proposed approach is robust to sensor placement and does not require specific calibration motions. The accuracy of the proposed approach is established relative to optical motion capture and compared to existing methods for estimating relative orientation, hip joint angles, and range of motion (ROM) during a task designed to exercise the full hip range of motion (ROM) and fast walking using root mean square error (RMSE) and regression analysis. The RMSE of the proposed approach was less than that for existing methods when estimating sensor orientation ( 12 . 32 ∘ and 11 . 82 ∘ vs. 24 . 61 ∘ and 23 . 76 ∘ ) and flexion/extension joint angles ( 7 . 88 ∘ and 8 . 62 ∘ vs. 14 . 14 ∘ and 15 . 64 ∘ ). Also, ROM estimation error was less than 2 . 2 ∘ during the walking trial using the proposed method. These results suggest the proposed approach presents an improvement to existing methods and provides a promising technique for remote monitoring of hip joint angles.


2018 ◽  
Vol 27 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Jae Guk Kim ◽  
Sung Hwan Bang ◽  
Gu Hyun Kang ◽  
Yong Soo Jang ◽  
Wonhee Kim ◽  
...  

Background: The cervical collar has been used as a common device for the initial stabilization of the cervical spine. Although many cervical collars are commercially available, there is no consensus on which offers the greatest protection, with studies showing considerable variations in their ability to restrict cervical range of motion. The use of the XCollar (Emegear, Carpinteria, CA) has been known to decrease the risk of spinal cord injury by minimizing potential cervical spinal distraction. We compared XCollar with two other cervical collars commonly used for adult patients with cervical spine injury to evaluate the difference in effectiveness between the three cervical collars to restrict cervical range of motion. Objectives: This study aimed to evaluate the difference between the three cervical collars in their ability to restrict cervical range of motion. Method: A total of 30 healthy university students aged 21–25 years participated in this study. Participants with any cervical disease and symptoms were excluded. Three cervical collars were tested: Philadelphia® Collar, Stifneck® Select™ Collar, and XCollar. A digital camera and an image-analysis technique were used to evaluate cervical range of motion during flexion, extension, bilateral bending and bilateral axial rotation. Cervical range of motion was evaluated in both the unbraced and braced condition. Results: XCollar permitted less than a mean of 10° of movement during flexion, extension, bilateral bending and bilateral axial rotation. This was less than the movement permitted by the other two cervical collars. Conclusion: XCollar presented superior cervical immobilization compared to the other two commonly used cervical collars in this study. Thus, when cervical collar is considered for an adult patient with cervical spine injury, XCollar might be one of the considerate options as a cervical immobilization device.


2020 ◽  
Vol 43 (12) ◽  
pp. 803-810 ◽  
Author(s):  
Masud Rana ◽  
Sandipan Roy ◽  
Palash Biswas ◽  
Shishir Kumar Biswas ◽  
Jayanta Kumar Biswas

The aim of this study is to design a novel expanding flexible rod device, for pedicle screw fixation to provide dynamic stability, based on strength and flexibility. Three-dimensional finite-element models of lumbar spine (L1-S) with flexible rod device on L3-L4-L5 levels are developed. The implant material is taken to be Ti-6Al-4V. The models are simulated under different boundary conditions, and the results are compared with intact model. In natural model, total range of motion under 10 Nm moment were found 66.7°, 24.3° and 13.59°, respectively during flexion–extension, lateral bending and axial rotation. The von Mises stress at intact bone was 4 ± 2 MPa and at bone, adjacent to the screw in the implanted bone, was 6 ± 3 MPa. The von Mises stress of disc of intact bone varied from 0.36 to 2.13 MPa while that of the disc between the fixed vertebra of the fixation model reduced by approximately 10% for flexion and 25% for extension compared to intact model. The von Mises stresses of pedicle screw were 120, 135, 110 and 90 MPa during flexion, extension, lateral bending, and axial rotation, respectively. All the stress values were within the safe limit of the material. Using the flexible rod device, flexibility was significantly increased in flexion/extension but not in axial rotation and lateral bending. The results suggest that dynamic stabilization system with respect to fusion is more effective for homogenizing the range of motion of the spine.


2013 ◽  
Vol 18 (1) ◽  
pp. 65-71 ◽  
Author(s):  
June Quek ◽  
Yong-Hao Pua ◽  
Ross A. Clark ◽  
Adam L. Bryant

2009 ◽  
Vol 3 (2) ◽  
Author(s):  
J. Bryndza ◽  
A. Weiser ◽  
M. Paliwal

Arthritis, degenerative disc disease, spinal stenosis, and other ailments lead to the deterioration of the facet joints of the spine, causing pain and immobility in patients. Dynamic stabilization and arthroplasty of the facet joints have advantages over traditional fusion methods by eliminating pain while maintaining normal mobility and function. In the present work, a novel dynamic stabilization spine implant design was developed using computational analysis, and the final design was fabricated and mechanically tested. A model of a fused L4–L5 Functional Spinal Unit (FSU) was developed using Pro/Engineer (PTC Corporation, Needham, MA). The model was imported into commercial finite element analysis software Ansys (Ansys Inc., Canonsburg, PA), and meshed with the material properties of bone, intervertebral disc, and titanium alloy. Physiological loads (600N axial load, 10 N-m moment) were applied to the model construct following the protocol developed by others. The model was subjected to flexion/extension, axial rotation, and lateral bending, and was validated with the results reported by Kim et al. The validated FSU was used as a base to design and evaluate novel spine implant designs, using finite element anlysis. A comparison of the flexion-extension curve of six designs and an intact spine was carried out. Range of motion of the new designs showed up to 4 degrees in flexion and extension, compared to less than one degree flexion/extension in a fused spine. The design that reproduced normal range of motion best was optimized, fabricated and prepared for mechanical testing. The finalized dynamic stabilization design with spring insert was implanted into a L4-L5 FSU sawbone (Pacific Research Laboratories, Vashon, WA) using Stryker Xia pedicle screws. The construct was potted using PMMA, and was subjected to flexion/extension, axial rotation, and lateral bending loads using MTS mechanical testing machine. The stiffness of the design was assessed and compared with computational analysis results.


Sign in / Sign up

Export Citation Format

Share Document