scholarly journals Evaluation of Automatic Facial Wrinkle Detection Algorithms

2020 ◽  
Vol 6 (4) ◽  
pp. 17
Author(s):  
Remah Mutasim Elbashir ◽  
Moi Hoon Yap

Facial wrinkles (considered to be natural features) appear as people get older. Wrinkle detection is an important aspect of applications that depend on facial skin changes, such as face age estimation and soft biometrics. While existing wrinkle detection algorithms focus on forehead horizontal lines, it is necessary to develop new methods to detect all wrinkles (vertical and horizontal) on whole face. Therefore, we evaluated the performance of wrinkle detection algorithms on the whole face and proposed an enhancement technique to improve the performance. More specifically, we used 45 images of the Face Recognition Technology dataset (FERET) and 25 images of the Sudanese dataset. For ground truth annotations, the selected images were manually annotated by the researcher. The experiments showed that the method with enhancement performed better at detecting facial wrinkles when compared to the state-of-the-art methods. When evaluated on FERET, the average Jaccard similarity indices were 56.17%, 31.69% and 15.87% for the enhancement method, Hybrid Hessian Filter and Gabor Filter, respectively.

Author(s):  
B. G.-Tóth ◽  
E. M. T. Hendrix ◽  
L. G. Casado

AbstractOver the last decades, algorithms have been developed for checking copositivity of a matrix. Methods are based on several principles, such as spatial branch and bound, transformation to Mixed Integer Programming, implicit enumeration of KKT points or face-based search. Our research question focuses on exploiting the mathematical properties of the relative interior minima of the standard quadratic program (StQP) and monotonicity. We derive several theoretical properties related to convexity and monotonicity of the standard quadratic function over faces of the standard simplex. We illustrate with numerical instances up to 28 dimensions the use of monotonicity in face-based algorithms. The question is what traversal through the face graph of the standard simplex is more appropriate for which matrix instance; top down or bottom up approaches. This depends on the level of the face graph where the minimum of StQP can be found, which is related to the density of the so-called convexity graph.


Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Bingsheng Wei ◽  
Martin Barczyk

We consider the problem of vision-based detection and ranging of a target UAV using the video feed from a monocular camera onboard a pursuer UAV. Our previously published work in this area employed a cascade classifier algorithm to locate the target UAV, which was found to perform poorly in complex background scenes. We thus study the replacement of the cascade classifier algorithm with newer machine learning-based object detection algorithms. Five candidate algorithms are implemented and quantitatively tested in terms of their efficiency (measured as frames per second processing rate), accuracy (measured as the root mean squared error between ground truth and detected location), and consistency (measured as mean average precision) in a variety of flight patterns, backgrounds, and test conditions. Assigning relative weights of 20%, 40% and 40% to these three criteria, we find that when flying over a white background, the top three performers are YOLO v2 (76.73 out of 100), Faster RCNN v2 (63.65 out of 100), and Tiny YOLO (59.50 out of 100), while over a realistic background, the top three performers are Faster RCNN v2 (54.35 out of 100, SSD MobileNet v1 (51.68 out of 100) and SSD Inception v2 (50.72 out of 100), leading us to recommend Faster RCNN v2 as the recommended solution. We then provide a roadmap for further work in integrating the object detector into our vision-based UAV tracking system.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-35
Author(s):  
Matteo Magnani ◽  
Obaida Hanteer ◽  
Roberto Interdonato ◽  
Luca Rossi ◽  
Andrea Tagarelli

A multiplex network models different modes of interaction among same-type entities. In this article, we provide a taxonomy of community detection algorithms in multiplex networks. We characterize the different algorithms based on various properties and we discuss the type of communities detected by each method. We then provide an extensive experimental evaluation of the reviewed methods to answer three main questions: to what extent the evaluated methods are able to detect ground-truth communities, to what extent different methods produce similar community structures, and to what extent the evaluated methods are scalable. One goal of this survey is to help scholars and practitioners to choose the right methods for the data and the task at hand, while also emphasizing when such choice is problematic.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3415 ◽  
Author(s):  
Jinpeng Zhang ◽  
Jinming Zhang ◽  
Shan Yu

In the image object detection task, a huge number of candidate boxes are generated to match with a relatively very small amount of ground-truth boxes, and through this method the learning samples can be created. But in fact the vast majority of the candidate boxes do not contain valid object instances and should be recognized and rejected during the training and evaluation of the network. This leads to extra high computation burden and a serious imbalance problem between object and none-object samples, thereby impeding the algorithm’s performance. Here we propose a new heuristic sampling method to generate candidate boxes for two-stage detection algorithms. It is generally applicable to the current two-stage detection algorithms to improve their detection performance. Experiments on COCO dataset showed that, relative to the baseline model, this new method could significantly increase the detection accuracy and efficiency.


Human-computer interaction (HCI), in recent times, is gaining a lot of significance. The systems based on HCI have been designed for recognizing different facial expressions. The application areas for face recognition include robotics, safety, and surveillance system. The emotions so captured aid in predicting future actions in addition to providing valuable information. Fear, neutral, sad, surprise, happy are the categories of primary emotions. From the database of still images, certain features can be obtained using Gabor Filter (GF) and Histogram of Oriented Gradient (HOG). These two techniques are being used while extracting features for getting the expressions from the face. This paper focuses on the customized classification of GF and HOG using the KNN classifier.GF provides texture features whereas HOG finds applications for images exhibiting differing lighting conditions. Simplicity and linearity of KNN classifier appeals for its use in the present application. The paper also elaborates various distances used in KNN classifiers like city-block, Euclidean and correlation distance. This paper uses Matlab implementation of GF, HOG and KNN for extracting the required features and classification, respectively. Results exhibit that the accuracy of city- block distance is more .


Paleobiology ◽  
2021 ◽  
pp. 1-18
Author(s):  
Daniel G. Dick ◽  
Marc Laflamme

Abstract Classic similarity indices measure community resemblance in terms of incidence (the number of shared species) and abundance (the extent to which the shared species are an equivalently large component of the ecosystem). Here we describe a general method for increasing the amount of information contained in the output of these indices and describe a new “soft” ecological similarity measure (here called “soft Chao-Jaccard similarity”). The new measure quantifies community resemblance in terms of shared species, while accounting for intraspecific variation in abundance and morphology between samples. We demonstrate how our proposed measure can reconstruct short ecological gradients using random samples of taxa, recognizing patterns that are completely missed by classic measures of similarity. To demonstrate the utility of our new index, we reconstruct a morphological gradient driven by river flow velocity using random samples drawn from simulated and real-world data. Results suggest that the new index can be used to recognize complex short ecological gradients in settings where only information about specimens is available. We include open-source R code for calculating the proposed index.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Milos Kudelka ◽  
Eliska Ochodkova ◽  
Sarka Zehnalova ◽  
Jakub Plesnik

Abstract The existence of groups of nodes with common characteristics and the relationships between these groups are important factors influencing the structures of social, technological, biological, and other networks. Uncovering such groups and the relationships between them is, therefore, necessary for understanding these structures. Groups can either be found by detection algorithms based solely on structural analysis or identified on the basis of more in-depth knowledge of the processes taking place in networks. In the first case, these are mainly algorithms detecting non-overlapping communities or communities with small overlaps. The latter case is about identifying ground-truth communities, also on the basis of characteristics other than only network structure. Recent research into ground-truth communities shows that in real-world networks, there are nested communities or communities with large and dense overlaps which we are not yet able to detect satisfactorily only on the basis of structural network properties.In our approach, we present a new perspective on the problem of group detection using only the structural properties of networks. Its main contribution is pointing out the existence of large and dense overlaps of detected groups. We use the non-symmetric structural similarity between pairs of nodes, which we refer to as dependency, to detect groups that we call zones. Unlike other approaches, we are able, thanks to non-symmetry, accurately to describe the prominent nodes in the zones which are responsible for large zone overlaps and the reasons why overlaps occur. The individual zones that are detected provide new information associated in particular with the non-symmetric relationships within the group and the roles that individual nodes play in the zone. From the perspective of global network structure, because of the non-symmetric node-to-node relationships, we explore new properties of real-world networks that describe the differences between various types of networks.


Sign in / Sign up

Export Citation Format

Share Document