scholarly journals Subpixel Localization of Isolated Edges and Streaks in Digital Images

2020 ◽  
Vol 6 (5) ◽  
pp. 33
Author(s):  
Devin T. Renshaw ◽  
John A. Christian

Many modern sensing systems rely on the accurate extraction of measurement data from digital images. The localization of edges and streaks in digital images is an important example of this type of measurement, with these techniques appearing in many image processing pipelines. Several approaches attempt to solve this problem at both the pixel level and subpixel level. While the subpixel methods are often necessary for applications requiring best-possible accuracy, they are often susceptible to noise, use iterative methods, or require pre-processing. This work investigates a unified framework for subpixel edge and streak localization using Zernike moments with ramp-based and wedge-based signal models. The method described here is found to outperform the current state-of-the-art for digital images with common signal-to-noise ratios. Performance is demonstrated on both synthetic and real images.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Zhou ◽  
Chengdong Wu ◽  
Dali Chen ◽  
Zhenzhu Wang ◽  
Yugen Yi ◽  
...  

Recently, microaneurysm (MA) detection has attracted a lot of attention in the medical image processing community. Since MAs can be seen as the earliest lesions in diabetic retinopathy, their detection plays a critical role in diabetic retinopathy diagnosis. In this paper, we propose a novel MA detection approach named multifeature fusion dictionary learning (MFFDL). The proposed method consists of four steps: preprocessing, candidate extraction, multifeature dictionary learning, and classification. The novelty of our proposed approach lies in incorporating the semantic relationships among multifeatures and dictionary learning into a unified framework for automatic detection of MAs. We evaluate the proposed algorithm by comparing it with the state-of-the-art approaches and the experimental results validate the effectiveness of our algorithm.


Author(s):  
C. A. Danbaki ◽  
N. C. Onyemachi ◽  
D. S. M. Gado ◽  
G. S. Mohammed ◽  
D. Agbenu ◽  
...  

This study is a survey on state-of-the-art methods based on artificial intelligence and image processing for precision agriculture on Crop Management, Pest and Disease Management, Soil and Irrigation Management, Livestock Farming and the challenges it presents. Precision agriculture (PA) described as applying current technologies into conventional farming methods. These methods have proved to be highly efficient, sustainable and profitable to the farmer hence boosting the economy. This study is a survey on the current state of the art methods applied to precision agriculture. The application of precision agriculture is expected to yield an increase in productivity which ultimately ends in profit to the farmer, to the society increase sustainability and also improve the economy.


2015 ◽  
Vol 33 (2) ◽  
pp. 63 ◽  
Author(s):  
Shuo Yang ◽  
Jian-Xun Li

Filters of the Spatial-Variant amoeba morphology can preserve edges better, but with too much noise being left. For better denoising, this paper presents a new method to generate structuring elements for Spatially-Variant amoeba morphology.  The amoeba kernel in the proposed strategy is divided into two parts: one is the patch distance based amoeba center, and another is the geodesic distance based amoeba boundary, by which the nonlocal patch distance and local geodesic distance are both taken into consideration. Compared to traditional amoeba kernel, the new one has more stable center and its shape can be less influenced by noise in pilot image. What’s more important is that the nonlocal processing approach can induce a couple of adjoint dilation and erosion, and combinations of them can construct adaptive opening, closing, alternating sequential filters, etc. By designing the new amoeba kernel, a family of morphological filters therefore is derived. Finally, this paper presents a series of results on both synthetic and real images along with comparisons with current state-of-the-art techniques, including novel applications to medical image processing and noisy SAR image restoration.


2021 ◽  
Vol 10 (9) ◽  
pp. 1961
Author(s):  
Md. Mohaimenul Islam ◽  
Tahmina Nasrin Poly ◽  
Belal Alsinglawi ◽  
Ming Chin Lin ◽  
Min-Huei Hsu ◽  
...  

Artificial intelligence (AI) has shown immense potential to fight COVID-19 in many ways. This paper focuses primarily on AI’s role in managing COVID-19 using digital images, clinical and laboratory data analysis, and a summary of the most recent articles published last year. We surveyed the use of AI for COVID-19 detection, screening, diagnosis, the progression of severity, mortality, drug repurposing, and other tasks. We started with the technical overview of all models used to fight the COVID-19 pandemic and ended with a brief statement of the current state-of-the-art, limitations, and challenges.


Author(s):  
Radu-Casian Mihailescu ◽  
Paul Davidsson ◽  
Ulrik Eklund ◽  
Jan A. Persson

AbstractRecent proliferation of surveillance systems is mostly attributed to advances in both image-processing techniques and hardware enhancement of smart cameras, as well as the ubiquity of sensor-driven architectures. Owing to these capabilities, new aspects are coming to the forefront. This paper addresses the current state-of-the-art and provides researchers with an overview of existing surveillance solutions, analyzing their properties as a system and drawing attention to relevant challenges when developing, deploying and managing them. Also, some of the more prominent application domains are highlighted here. In an effort to understand the development of the advanced solutions, based on their most distinctive characteristics, we propose a taxonomy for surveillance systems to help classify them and reveal gaps in existing research. We conclude by identifying promising future research lines.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND

10.37236/24 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
A. Di Bucchianico ◽  
D. Loeb

We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of “magic rules” for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly.


Sign in / Sign up

Export Citation Format

Share Document