scholarly journals Media Forensics Considerations on DeepFake Detection with Hand-Crafted Features

2021 ◽  
Vol 7 (7) ◽  
pp. 108
Author(s):  
Dennis Siegel ◽  
Christian Kraetzer ◽  
Stefan Seidlitz ◽  
Jana Dittmann

DeepFake detection is a novel task for media forensics and is currently receiving a lot of research attention due to the threat these targeted video manipulations propose to the trust placed in video footage. The current trend in DeepFake detection is the application of neural networks to learn feature spaces that allow them to be distinguished from unmanipulated videos. In this paper, we discuss, with features hand-crafted by domain experts, an alternative to this trend. The main advantage that hand-crafted features have over learned features is their interpretability and the consequences this might have for plausibility validation for decisions made. Here, we discuss three sets of hand-crafted features and three different fusion strategies to implement DeepFake detection. Our tests on three pre-existing reference databases show detection performances that are under comparable test conditions (peak AUC > 0.95) to those of state-of-the-art methods using learned features. Furthermore, our approach shows a similar, if not better, generalization behavior than neural network-based methods in tests performed with different training and test sets. In addition to these pattern recognition considerations, first steps of a projection onto a data-centric examination approach for forensics process modeling are taken to increase the maturity of the present investigation.

Author(s):  
Inzamam Mashood Nasir ◽  
Muhammad Rashid ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Muhammad Yahiya Haider Awan ◽  
...  

Background: Breast cancer is considered as the most perilous sickness among females worldwide and the ratio of new cases is expanding yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. Objective: Most of these systems have either used traditional handcrafted features or deep features which had a lot of noise and redundancy, which ultimately decrease the performance of the system. Methods: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pretrained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of proposed method. Results: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. Conclusion: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Michael Loster ◽  
Ioannis Koumarelas ◽  
Felix Naumann

The integration of multiple data sources is a common problem in a large variety of applications. Traditionally, handcrafted similarity measures are used to discover, merge, and integrate multiple representations of the same entity—duplicates—into a large homogeneous collection of data. Often, these similarity measures do not cope well with the heterogeneity of the underlying dataset. In addition, domain experts are needed to manually design and configure such measures, which is both time-consuming and requires extensive domain expertise. We propose a deep Siamese neural network, capable of learning a similarity measure that is tailored to the characteristics of a particular dataset. With the properties of deep learning methods, we are able to eliminate the manual feature engineering process and thus considerably reduce the effort required for model construction. In addition, we show that it is possible to transfer knowledge acquired during the deduplication of one dataset to another, and thus significantly reduce the amount of data required to train a similarity measure. We evaluated our method on multiple datasets and compare our approach to state-of-the-art deduplication methods. Our approach outperforms competitors by up to +26 percent F-measure, depending on task and dataset. In addition, we show that knowledge transfer is not only feasible, but in our experiments led to an improvement in F-measure of up to +4.7 percent.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. O91-O104 ◽  
Author(s):  
Georgios Pilikos ◽  
A. C. Faul

Extracting the maximum possible information from the available measurements is a challenging task but is required when sensing seismic signals in inaccessible locations. Compressive sensing (CS) is a framework that allows reconstruction of sparse signals from fewer measurements than conventional sampling rates. In seismic CS, the use of sparse transforms has some success; however, defining fixed basis functions is not trivial given the plethora of possibilities. Furthermore, the assumption that every instance of a seismic signal is sparse in any acquisition domain under the same transformation is limiting. We use beta process factor analysis (BPFA) to learn sparse transforms for seismic signals in the time slice and shot record domains from available data, and we use them as dictionaries for CS and denoising. Algorithms that use predefined basis functions are compared against BPFA, with BPFA obtaining state-of-the-art reconstructions, illustrating the importance of decomposing seismic signals into learned features.


Geophysics ◽  
2021 ◽  
pp. 1-86
Author(s):  
Wei Chen ◽  
Omar M. Saad ◽  
Yapo Abolé Serge Innocent Oboué ◽  
Liuqing Yang ◽  
Yangkang Chen

Most traditional seismic denoising algorithms will cause damages to useful signals, which are visible from the removed noise profiles and are known as signal leakage. The local signal-and-noise orthogonalization method is an effective method for retrieving the leaked signals from the removed noise. Retrieving leaked signals while rejecting the noise is compromised by the smoothing radius parameter in the local orthogonalization method. It is not convenient to adjust the smoothing radius because it is a global parameter while the seismic data is highly variable locally. To retrieve the leaked signals adaptively, we propose a new dictionary learning method. Because of the patch-based nature of the dictionary learning method, it can adapt to the local feature of seismic data. We train a dictionary of atoms that represent the features of the useful signals from the initially denoised data. Based on the learned features, we retrieve the weak leaked signals from the noise via a sparse co ding step. Considering the large computational cost when training a dictionary from high-dimensional seismic data, we leverage a fast dictionary up dating algorithm, where the singular value decomposition (SVD) is replaced via the algebraic mean to update the dictionary atom. We test the performance of the proposed method on several synthetic and field data examples, and compare it with that from the state-of-the-art local orthogonalization method.


Author(s):  
Pushpak Bhattacharyya ◽  
Mitesh Khapra

This chapter discusses the basic concepts of Word Sense Disambiguation (WSD) and the approaches to solving this problem. Both general purpose WSD and domain specific WSD are presented. The first part of the discussion focuses on existing approaches for WSD, including knowledge-based, supervised, semi-supervised, unsupervised, hybrid, and bilingual approaches. The accuracy value for general purpose WSD as the current state of affairs seems to be pegged at around 65%. This has motivated investigations into domain specific WSD, which is the current trend in the field. In the latter part of the chapter, we present a greedy neural network inspired algorithm for domain specific WSD and compare its performance with other state-of-the-art algorithms for WSD. Our experiments suggest that for domain-specific WSD, simply selecting the most frequent sense of a word does as well as any state-of-the-art algorithm.


Author(s):  
Marco A. Gómez-Martín ◽  
Pedro P. Gómez-Martín ◽  
Pedro A. González-Calero

A key challenge to move forward the state of the art in games-based learning systems is to facilitate instructional content creation by the domain experts. Several decades of research on computer aided instruction have demonstrated that the expert has to be deeply involved in the content creation process, and that is why so much effort has been devoted to building authoring tools of all kinds. However, using videogame technology to support computer aided instruction poses some new challenges on expertfriendly authoring tools, related to technical and cost issues. In this chapter the authors present the state of the art in content creation for games-based learning systems, identifying the main challenges to make this technology cost-effective from the content creation point of view.


2020 ◽  
Vol 11 ◽  
Author(s):  
Germana Cappellini ◽  
Francesca Sylos-Labini ◽  
Carla Assenza ◽  
Laura Libernini ◽  
Daniela Morelli ◽  
...  

Surface electromyography (sEMG) can be used to assess the integrity of the neuromuscular system and its impairment in neurological disorders. Here we will consider several issues related to the current clinical applications, difficulties and limited usage of sEMG for the assessment and rehabilitation of children with cerebral palsy. The uniqueness of this methodology is that it can determine hyperactivity or inactivity of selected muscles, which cannot be assessed by other methods. In addition, it can assist for intervention or muscle/tendon surgery acts, and it can evaluate integrated functioning of the nervous system based on multi-muscle sEMG recordings and assess motor pool activation. The latter aspect is especially important for understanding impairments of the mechanisms of neural controllers rather than malfunction of individual muscles. Although sEMG study is an important tool in both clinical research and neurorehabilitation, the results of a survey on the clinical relevance of sEMG in a typical department of pediatric rehabilitation highlighted its limited clinical usage. We believe that this is due to limited knowledge of the sEMG and its neuromuscular underpinnings by many physiotherapists, as a result of lack of emphasis on this important methodology in the courses taught in physical therapy schools. The lack of reference databases or benchmarking software for sEMG analysis may also contribute to the limited clinical usage. Despite the existence of educational and technical barriers to a widespread use of, sEMG does provide important tools for planning and assessment of rehabilitation treatments for children with cerebral palsy.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1143
Author(s):  
Zhenwu Wang ◽  
Tielin Wang ◽  
Benting Wan ◽  
Mengjie Han

Multi-label classification (MLC) is a supervised learning problem where an object is naturally associated with multiple concepts because it can be described from various dimensions. How to exploit the resulting label correlations is the key issue in MLC problems. The classifier chain (CC) is a well-known MLC approach that can learn complex coupling relationships between labels. CC suffers from two obvious drawbacks: (1) label ordering is decided at random although it usually has a strong effect on predictive performance; (2) all the labels are inserted into the chain, although some of them may carry irrelevant information that discriminates against the others. In this work, we propose a partial classifier chain method with feature selection (PCC-FS) that exploits the label correlation between label and feature spaces and thus solves the two previously mentioned problems simultaneously. In the PCC-FS algorithm, feature selection is performed by learning the covariance between feature set and label set, thus eliminating the irrelevant features that can diminish classification performance. Couplings in the label set are extracted, and the coupled labels of each label are inserted simultaneously into the chain structure to execute the training and prediction activities. The experimental results from five metrics demonstrate that, in comparison to eight state-of-the-art MLC algorithms, the proposed method is a significant improvement on existing multi-label classification.


2020 ◽  
Vol 34 (05) ◽  
pp. 9523-9530
Author(s):  
Junlang Zhan ◽  
Hai Zhao

Open Information Extraction (Open IE) is a challenging task especially due to its brittle data basis. Most of Open IE systems have to be trained on automatically built corpus and evaluated on inaccurate test set. In this work, we first alleviate this difficulty from both sides of training and test sets. For the former, we propose an improved model design to more sufficiently exploit training dataset. For the latter, we present our accurately re-annotated benchmark test set (Re-OIE2016) according to a series of linguistic observation and analysis. Then, we introduce a span model instead of previous adopted sequence labeling formulization for n-ary Open IE. Our newly introduced model achieves new state-of-the-art performance on both benchmark evaluation datasets.


2020 ◽  
Vol 35 ◽  
Author(s):  
Jomar Da Silva ◽  
Kate Revoredo ◽  
Fernanda Baião ◽  
Jérôme Euzenat

Abstract Ontology matching aims at discovering mappings between the entities of two ontologies. It plays an important role in the integration of heterogeneous data sources that are described by ontologies. Interactive ontology matching involves domain experts in the matching process. In some approaches, the expert provides feedback about mappings between ontology entities, that is, these approaches select mappings to present to the expert who replies which of them should be accepted or rejected, so taking advantage of the knowledge of domain experts towards finding an alignment. In this paper, we present Alin, an interactive ontology matching approach which uses expert feedback not only to approve or reject selected mappings but also to dynamically improve the set of selected mappings, that is, to interactively include and to exclude mappings from it. This additional use for expert answers aims at increasing in the benefit brought by each expert answer. For this purpose, Alin uses four techniques. Two techniques were used in the previous versions of Alin to dynamically select concept and attribute mappings. Two new techniques are introduced in this paper: one to dynamically select relationship mappings and another one to dynamically reject inconsistent selected mappings using anti-patterns. We compared Alin with state-of-the-art tools, showing that it generates alignment of comparable quality.


Sign in / Sign up

Export Citation Format

Share Document