scholarly journals The Basics of Time-Domain-Based Milling Stability Prediction Using Frequency Response Function

2020 ◽  
Vol 4 (3) ◽  
pp. 72 ◽  
Author(s):  
Zoltan Dombovari ◽  
Markel Sanz-Calle ◽  
Mikel Zatarain

This study presents the fundamentals of the usage of frequency response functions (FRF) directly in time-domain-based methods. The methodology intends to combine the advantages of frequency- and time-domain-based techniques to determine the stability of stationary solutions of a given milling process. This is achieved by applying the so-called impulse dynamic subspace (IDS) method, with which the impulse response function (IRF) can be disassembled to separated singular IRFs that form the basis of the used transformation. Knowing the IDS state, the linear stability boundaries can be constructed and a measure of stability can be determined using the Floquet multipliers via the semidiscretization method (SDM). This step has a huge importance in parameter optimization where the multipliers can be used as objective functions, which is hardly achievable using frequency-domain-based methods. Here we present the basic idea of utilizing the IDS method and analyze its convergence properties.

Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


2010 ◽  
Vol 09 (04) ◽  
pp. 387-394 ◽  
Author(s):  
YANG CHEN ◽  
YIWEN SUN ◽  
EMMA PICKWELL-MACPHERSON

In terahertz imaging, deconvolution is often performed to extract the impulse response function of the sample of interest. The inverse filtering process amplifies the noise and in this paper we investigate how we can suppress the noise without over-smoothing and losing useful information. We propose a robust deconvolution process utilizing stationary wavelet shrinkage theory which shows significant improvement over other popular methods such as double Gaussian filtering. We demonstrate the success of our approach on experimental data of water and isopropanol.


Author(s):  
Chong-Won Lee ◽  
Kye-Si Kwon

Abstract A quick and easy but comprehensive identification method for asymmetry in an asymmetric rotor is proposed based on complex modal testing method. In this work, it is shown that the reverse directional frequency response function (reverse dFRF), which indicates the degree of asymmetry, can be identified with a simple method requiring only one vibration sensor and one exciter. To clarify physical realization associated with estimation of the reverse dFRF, its relation to the conventional frequency response functions, which are defined by the real input (exciter) and output (vibration sensor), are extensively discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Rong He ◽  
Hong Zhou

The time-domain substructure inverse matrix method has become a popular method to detect and diagnose problems regarding vehicle noise, vibration, and harshness, especially for those impulse excitations caused by roads. However, owning to its reliance on frequency response functions (FRFs), the approach is effective only for time-invariable linear or weak nonlinear systems. This limitation prevents this method from being applied to a typical vehicle suspension substructure, which shows different nonlinear characteristics under different wheel transient loads. In this study, operational excitation was considered as a key factor and applied to calculate dynamic time-varying FRFs to perform accurate time-domain transient vibration transfer path analysis (TPA). The core idea of this novel method is to divide whole coupled substructural relationships into two parts: one involved time-invariable components; normal FRFs could be obtained through tests directly. The other involved numerical computations of the time-domain operational loads matrix and FRFs matrix in static conditions. This method focused on determining dynamic FRFs affected by operational loads, especially the severe transient ones; these loads are difficult to be considered in other classical TPA approaches, such as operational path analysis with exogenous inputs (OPAX) and operational transfer path analysis (OTPA). Experimental results showed that this new approach could overcome the limitations of the traditional time-domain substructure TPA in terms of its strict requirements within time-invariable systems. This is because in the new method, time-varying FRFs were calculated and used, which could make the FRFs at the system level directly adapt to time-varying systems from time to time. In summary, the modified method extends TPA objects studied in time-invariable systems to time-varying systems and, thus, makes a methodology and application innovation compared to traditional the time-domain substructure TPA.


2014 ◽  
Vol 19 (4) ◽  
pp. 27-35
Author(s):  
Mariusz Sulima

Abstract This work presents a new DHT impulse response function based on the proposed nonlinear equation system obtained as a result of combining the DHT and IDHT equation systems. In the case of input time series with selected characteristics, the DHT results obtained using this impulse response function are characterised by a higher accuracy compared to the DHT results obtained based on the convolution using other known DHT impulse response functions. The results are also characterised by a higher accuracy than the DHT results obtained using the popular indirect DHT method based on discrete Fourier transform (DFT). Analysis of these example time series with selected characteristics was performed based on the signal-to-noise ratio.


1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


2014 ◽  
Vol 612 ◽  
pp. 29-34
Author(s):  
Jakeer Hussain Shaik ◽  
J. Srinivas

Dynamic behaviour of spindle system influences chatter stability of machine tool considerably. Self-excited vibrations of the tool results in unstable cutting process which leads to the chatter on the work surface and it reduces the productivity. In this paper, a system of coupled spindle bearing system is employed by considering the angular contact ball bearing forces on stability of machining. Using Timoshenko beam element formulation, the spindle unit is analyzed by including the gyroscopic and centrifugal terms. Frequency response functions at the tool-tip are obtained from the dynamic spindle model. In the second phase, solid model of the system is developed and its dynamic response is obtained from three dimensional finite element analysis. The works on analysis of the stability of milling processes focus on calculating the stability boundary of the machining parameters based on the dynamic models characterizing the milling processes. The stability lobe diagrams are generated from frequency response functions (FRF’s) lead to an stability limit prediction for the system at high speed ranges.


1985 ◽  
Vol 157 ◽  
pp. 17-33 ◽  
Author(s):  
J. N. Newman

A linear theory is developed in the time domain for vertical motions of an axisymmetric cylinder floating in the free surface. The velocity potential is obtained numerically from a discretized boundary-integral-equation on the body surface, using a Galerkin method. The solution proceeds in time steps, but the coefficient matrix is identical at each step and can be inverted at the outset.Free-surface effects are absent in the limits of zero and infinite time. The added mass is determined in both cases for a broad range of cylinder depths. For a semi-infinite cylinder the added mass is obtained by extrapolation.An impulse-response function is used to describe the free-surface effects in the time domain. An oscillatory error observed for small cylinder depths is related to the irregular frequencies of the solution in the frequency domain. Fourier transforms of the impulse-response function are compared with direct computations of the damping and added-mass coefficients in the frequency domain. The impulse-response function is also used to compute the free motion of an unrestrained cylinder, following an initial displacement or acceleration.


1987 ◽  
Vol 31 (03) ◽  
pp. 164-176 ◽  
Author(s):  
Robert F. Beck ◽  
Stergios Liapis

Linear, time-domain analysis is used to solve the radiation problem for the forced motion of a floating body at zero forward speed. The velocity potential due to an impulsive velocity (a step change in displacement) is obtained by the solution of a pair of integral equations. The integral equations are solved numerically for bodies of arbitrary shape using discrete segments on the body surface. One of the equations must be solved by time stepping, but the kernel matrix is identical at each step and need only be inverted once. The Fourier transform of the impulse-response function gives the more conventional added-mass and damping in the frequency domain. The results for arbitrary motions may be found as a convolution of the impulse response function and the time derivatives of the motion. Comparisons are shown between the time-domain computations and published results for a sphere in heave, a sphere in sway, and a right circular cylinder in heave. Theoretical predictions and experimental results for the heave motion of a sphere released from an initial displacement are also given. In all cases the comparisons are excellent.


Sign in / Sign up

Export Citation Format

Share Document