scholarly journals Ocean Energy Systems Wave Energy Modelling Task: Modelling, Verification and Validation of Wave Energy Converters

2019 ◽  
Vol 7 (11) ◽  
pp. 379 ◽  
Author(s):  
Wendt ◽  
Nielsen ◽  
Yu ◽  
Bingham ◽  
Eskilsson ◽  
...  

The International Energy Agency Technology Collaboration Programme for Ocean Energy Systems (OES) initiated the OES Wave Energy Conversion Modelling Task, which focused on the verification and validation of numerical models for simulating wave energy converters (WECs). The long-term goal is to assess the accuracy of and establish confidence in the use of numerical models used in design as well as power performance assessment of WECs. To establish this confidence, the authors used different existing computational modelling tools to simulate given tasks to identify uncertainties related to simulation methodologies: (i) linear potential flow methods; (ii) weakly nonlinear Froude–Krylov methods; and (iii) fully nonlinear methods (fully nonlinear potential flow and Navier–Stokes models). This article summarizes the code-to-code task and code-to-experiment task that have been performed so far in this project, with a focus on investigating the impact of different levels of nonlinearities in the numerical models. Two different WECs were studied and simulated. The first was a heaving semi-submerged sphere, where free-decay tests and both regular and irregular wave cases were investigated in a code-to-code comparison. The second case was a heaving float corresponding to a physical model tested in a wave tank. We considered radiation, diffraction, and regular wave cases and compared quantities, such as the WEC motion, power output and hydrodynamic loading.

2021 ◽  
Vol 13 (11) ◽  
pp. 2070
Author(s):  
Ana Basañez ◽  
Vicente Pérez-Muñuzuri

Wave energy resource assessment is crucial for the development of the marine renewable industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and Silleiro capes). The resulting wave characterization was used to estimate the electricity production of two wave energy converters. Results were validated against wave data from two buoys and two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a large overestimation of the wave energy period. The effect of the radars’ data loss during low wave energy periods on the mean wave energy is partially compensated with the overestimation of wave height and energy period. The theoretical electrical energy production of the wave energy converters was also affected by these differences. Energy period estimation was found to be highly conditioned to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar software will be able to characterize different sea states independently.


2013 ◽  
Vol 569-570 ◽  
pp. 595-602 ◽  
Author(s):  
William Finnegan ◽  
Jamie Goggins

A vital aspect of ensuring the cost effectiveness of wave energy converters (WECs) is being able to monitor their performance remotely through structural health monitoring, as these devices are deployed in very harsh environments in terms of both accessibility and potential damage to the devices. The WECs are monitored through the use of measuring equipment, which is strategically placed on the device. This measured data is then compared to the output from a numerical model of the WEC under the same ocean wave conditions. Any deviations would suggest that there are problems or issues with the WEC. The development of accurate and effective numerical models is necessary to minimise the number of times the visual, or physical, inspection of a deployed WEC is required. In this paper, a numerical wave tank model is, first, validated by comparing the waves generated to those generated experimentally using the wave flume located at the National University of Ireland, Galway. This model is then extended so it is suitable for generating real ocean waves. A wave record observed at the Atlantic marine energy test site has been replicated in the model to a high level of accuracy. A rectangular floating prism is then introduced into the model in order to explore wave-structure interaction. The dynamic response of the structure is compared to a simple analytical solution and found to be in good agreement.


2022 ◽  
Author(s):  
C. Windt

Abstract. Numerical modelling tools are commonly applied during the development and optimisation of ocean wave energy converters (WECs). Models are available for the hydrodynamic wave structure interaction, as well as the WEC sub–systems, such as the power take–off (PTO) model. Based on the implemented equations, different levels of fidelity are available for the numerical models. Specifically under controlled conditions, with enhance WEC motion, it is assumed that non-linearities are more prominent, re- quiring the use of high–fidelity modelling tools. Based on two different test cases for two different WECs, this paper highlights the importance of high–fidelity numerical modelling of WECs under controlled conditions.


Author(s):  
Dripta Sarkar ◽  
Emile Contal ◽  
Nicolas Vayatis ◽  
Frederic Dias

The hydrodynamic analysis and estimation of the performance of wave energy converters (WECs) is generally performed using semi-analytical/numerical models. Commercial boundary element codes are widely used in analyzing the interactions in arrays comprising of wave energy conversion devices. However, the analysis of an array of such converters becomes computationally expensive, and the computational time increases as the number of devices in the system is increased. As such determination of optimal layouts of WECs in arrays becomes extremely difficult. In this study, an innovative active experimental approach is presented to predict the behaviour of theWECs in arrays. The input variables are the coordinates of the center of the wave energy converters. Simulations for training examples and validation are performed for an array of OscillatingWave Surge Converters, using the mathematical model of Sarkar et. al. (Proc. R. Soc. A, 2014). As a part of the initial findings, results will be presented on the performance of wave energy converters located well inside an array. The broader scope/aim of this research would be to predict the behaviour of the individual devices and overall performance of the array for arbitrary layouts of the system and then identify optimal layouts subject to various constraints.


2017 ◽  
Vol 145 ◽  
pp. 1-14 ◽  
Author(s):  
Linnea Sjökvist ◽  
Jinming Wu ◽  
Edward Ransley ◽  
Jens Engström ◽  
Mikael Eriksson ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 225
Author(s):  
Constantine Michailides

During the past years, researchers have studied both numerically and experimentally multibody wave-wind combined energy structures supporting wind turbines and different types of Wave Energy Converters (WECs); rigid body hydrodynamic assumptions have been adopted so far for the development of their numerical models and the assessment of their produced power. In the present paper a numerical model that is based on the use of generalized modes addressing wave-structure interaction effects for the case of a multibody wave-wind combined structure is developed and presented. Afterwards, the developed numerical model is used for the assessment of the hydrodynamic response and the prediction of the produced power of different possible configurations of the updated WindWEC concept which consists of a spar supporting a wind turbine and one, two, three or four heaving type WEC buoys. The combined effects of the center-to-center distance of the WEC and spar platform, the number of the WECs and the grid configuration of spar and WECs on the hydrodynamic interaction between the different floating bodies, spar and WEC buoys, and consequently on their response and wave power production are examined for regular and irregular waves. Strong hydrodynamic interaction effects exist for small distance between spar and WECs that result to the decrease of the produced power. Power matrices of the updated WindWEC concept are presented for all examined configurations with different number of WECs. Moreover, the annual produced power of the updated WindWEC in two sites is estimated and presented. The generalized modes analysis presented in this paper is generic and can be used for the early stage assessment of wave-wind combined energy structures with low computational cost. The updated WindWEC can be used in sea sites with different environmental characteristics while extracting valuable amount of wave power.


Author(s):  
Aure´lien Babarit ◽  
Hakim Mouslim ◽  
Alain Cle´ment ◽  
Pauline Laporte-Weywada

Wave energy converters of the wave activated body class are designed to have large amplitudes of motion, even in moderate sea states, because their efficiency is directly related with the amplitude of their motion. Hence, classical seakeeping numerical tools based on linear potential theory, which are widely used in the design process of offshore structures, are not accurate enough in the case of wave energy conversion. So, large differences between numerical predictions and wave tank experiments are often observed. On the other hand, the use of CFD models theoretically able to provide more accurate results is still difficult for wave energy applications, mainly because this requires a huge computation time. Moreover, it is well known that viscous solver have difficulties in propagatating gravity waves accurately. In this paper, we assess the potential of two advanced hydro-dynamic numerical models in the numerical modelling of wave energy converters. These numerical models are expected to provide more accurate results than classical linear theory based numerical models and faster results than CFD models. Particularly, these tools are expected to be able to deal efficiently with large motions of wave energy converters. In the first one, the hydrostatic forces and the Froude-Krylov forces are computed on the exact wetted surface of the wave energy converter, whereas radiation and diffraction forces are computed using the standard linear potential theory. Using this model, it is shown that we were able to predict the parametric roll phenomenon in the case of the SEAREV wave energy converter. In the second one, a Navier Stokes solver, based on RANS equations, is used. Comparisons are made with experiments and it is showed that this tool is able to model quite accurately viscous effects such as slamming. However, computation time is found to be long with this last tool.


Author(s):  
Andrew S. Zurkinden ◽  
Morten Kramer ◽  
Mahdi Teimouri Teimouri ◽  
Marco Alves

Currently, a number of wave energy converters are being analyzed by means of numerical models in order to predict the electrical power generation under given wave conditions. A common characteristic of this procedure is to integrate the loadings from the hydrodynamics, power take-off and mooring systems into a central wave to wire model. The power production then depends on the control strategy which is applied to the device. The objective of this paper is to develop numerical methods for motion analysis of marine structures with a special emphasis on wave energy converters. Two different time domain models are applied to a point absorber system working in pitch mode only. The device is similar to the well-known Wavestar prototype located in the Danish North Sea. A laboratory model has been set up in order to validate the numerical simulations of the dynamics. Wave Excitation force and the response of the device for regular and irregular waves were measured. Good correspondence is found between the numerical and the physical model for relatively mild wave conditions. For higher waves the numerical model seems to underestimate the response of the device due to its linear fluid-structure interaction assumption and linearized equation of motion. The region over which the numerical model is valid will be presented in terms of non-dimensional parameters describing the different wave states.


Author(s):  
Aure´lien Babarit ◽  
Jorgen Hals ◽  
Adi Kurniawan ◽  
Torgeir Moan ◽  
Jorgen Krokstad

In this study, a selection of Wave Energy Converters (WECs) with different working principle is considered. It comprises a heaving device reacting against the seabed, a heaving self-reacting two-bodies device, a pitching device, and a floating OWC device. They are inspired by concepts which are currently under development. For each of these concepts, a numerical Wave To Wire (W2W) model is derived. Numerical estimates of the energy delivery which one can expect are derived using these numerical models on a selection of wave site along the European coast. This selection of wave site is thought to be representative with levels of mean annual wave power from 15 to 88 kW/m. Using these results, the performance of each WEC is assessed not only in terms of yearly energy output, but also in terms of yearly absorbed energy/displacement, yearly absorbed energy/wetted surface, and yearly absorbed energy per unit significant Power Take Off force. By comparing these criteria, one gets a better idea of the advantages and drawbacks of each of the studied concepts.


Sign in / Sign up

Export Citation Format

Share Document