scholarly journals AutoTuning Environment for Static Obstacle Avoidance Methods Applied to USVs

2020 ◽  
Vol 8 (5) ◽  
pp. 300 ◽  
Author(s):  
Rafael Guardeño ◽  
Manuel J. López ◽  
Jesús Sánchez ◽  
Agustín Consegliere

This work is focused on reactive Static Obstacle Avoidance (SOA) methods used to increase the autonomy of Unmanned Surface Vehicles (USVs). Currently, there are multiple approaches to avoid obstacles, which can be applied to different types of USV. In order to assist in the choice of the SOA method for a particular vessel and to accelerate the pretuning process necessary for its implementation, this paper proposes a new AutoTuning Environment for Static Obstacle Avoidance (ATESOA) methods applied to USVs. In this environment, a new simplified modelling of a LIDAR (Laser Imaging Detection and Ranging) sensor is proposed based on numerical simulations. This sensor model provides a realistic environment for the tuning of SOA methods that, due to its low load computation, is used by evolutionary algorithms for the autotuning. In order to analyze the proposed ATESOA, three SOA methods were adapted and implemented to consider the measurements given by the LIDAR model. Furthermore, a mathematical model is proposed and evaluated for using as USV in the simulation enviroment. The results obtained in numerical simulations show how the new ATESOA is able to adjust the SOA methods in scenarios with different obstacle distributions.

2007 ◽  
Author(s):  
Jacoby Larson ◽  
Michael Bruch ◽  
Ryan Halterman ◽  
John Rogers ◽  
Robert Webster

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


1994 ◽  
Vol 264 ◽  
pp. 81-106 ◽  
Author(s):  
J. Verron ◽  
S. Valcke

The influence of stratification on the merging of like-sign vortices of equal intensity and shape is investigated by numerical simulations in a quasi-geostrophic, two-layer stratified model. Two different types of vortices are considered: vortices defined as circular patches of uniform potential vorticity in the upper layer but no PV anomaly in the lower layer (referred to as PVI vortices), and vortices defined as circular patches of uniform relative vorticity in the upper layer but no motion in the lower layer (referred to as RVI vortices). In particular, it is found that, in the RVI case, the merging behaviour depends strongly on the magnitude of the stratification (i.e. the ratio of internal Rossby radius and vortex radius). The critical point here appears to be whether or not the initial eddies have a deep flow signature in terms of PV.The specific phenomenon of scale-dependent merging observed is interpreted in terms of the competitive effects of hetonic interaction and vortex shape. In the case of weaker stratification, the baroclinic structure of the eddies can be seen as dominated by a mechanism of hetonic interaction in which bottom flow appears to counteract the tendency of surface eddies to merge. In the case of larger stratification, the eddy interaction mechanism is shown to be barotropically dominated, although interface deformation still determines the actual eddy vorticity profile during the initialization stage. Repulsion (hetonic) effect therefore oppose attraction (barotropic shape) effects in a competitive process dependent on the relationship between the original eddy lengthscale and the first internal Rossby radius.A concluding discussion considers the implications of such analysis for real situations, in the ocean or in the laboratory.


2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2013 ◽  
Vol 86 (4) ◽  
pp. 433-442 ◽  
Author(s):  
JAIME HERNÁNDEZ ◽  
M. PAZ ACUÑA ◽  
PATRICIO CORVALÁN ◽  
JAVIER A SIMONETTI

Author(s):  
Z. C. Feng ◽  
Mahmoud Almasri

Designs of many micro devices take advantage of the symmetry for better performance, immunity to noise, and for simpler analysis. When a symmetric structure is subjected to symmetric forcing, the symmetric response can become unstable leading to asymmetric responses. The occurrence of symmetry breaking bifurcation leads to complicated dynamic responses which often result in less desirable performances. In this paper, we obtain analytical criteria for the onset of symmetry breaking bifurcations. We also conduct numerical simulations to demonstrate different types of asymmetric dynamic responses resulting from the symmetry breaking bifurcation. In particular, we show the occurrence of amplitude modulated motions in such systems.


2019 ◽  
Vol 8 (1) ◽  
pp. 486-495 ◽  
Author(s):  
Bimal Kumar Mishra ◽  
Ajit Kumar Keshri ◽  
Dheeresh Kumar Mallick ◽  
Binay Kumar Mishra

Abstract Internet of Things (IoT) opens up the possibility of agglomerations of different types of devices, Internet and human elements to provide extreme interconnectivity among them towards achieving a completely connected world of things. The mainstream adaptation of IoT technology and its widespread use has also opened up a whole new platform for cyber perpetrators mostly used for distributed denial of service (DDoS) attacks. In this paper, under the influence of internal and external nodes, a two - fold epidemic model is developed where attack on IoT devices is first achieved and then IoT based distributed attack of malicious objects on targeted resources in a network has been established. This model is mainly based on Mirai botnet made of IoT devices which came into the limelight with three major DDoS attacks in 2016. The model is analyzed at equilibrium points to find the conditions for their local and global stability. Impact of external nodes on the over-all model is critically analyzed. Numerical simulations are performed to validate the vitality of the model developed.


2013 ◽  
Vol 756-759 ◽  
pp. 372-375
Author(s):  
Hong Bin Tian

In order to increase the movement capability of the robotic visual system in three-dimension space, the paper designs an obstacle-avoidance algorithm based on robotic movement visual by effectively processing the visual information colleted by the robotics. This paper establishes a structural model of coordination control system. The obstacles can be effectively identified and avoided by the obstacle-avoidance theory in the robotics coordination operation. The mathematical model of the obstacle-avoidance algorithm can predict the locations of the obstacles. The experiment proves the proposed algorithm can avoid the obstacles in three-dimension space and the accuracy is very high.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yudi Ari Adi ◽  
Fajar Adi-Kusumo ◽  
Lina Aryati ◽  
Mardiah S. Hardianti

Acute myeloid leukemia (AML) is a malignant hematopoietic disorder characterized by uncontrolled proliferation of immature myeloid cells. In the AML cases, the phosphoinositide 3-kinases (PI3K)/AKT signaling pathways are frequently activated and strongly contribute to proliferation and survival of these cells. In this paper, a mathematical model of the PI3K/AKT signaling pathways in AML is constructed to study the dynamics of the proteins in these pathways. The model is a 5-dimensional system of the first-order ODE which describes the interaction of the proteins in AML. The interactions between those components are assumed to follow biochemical reactions, which are modelled by Hill’s equation. From the numerical simulations, there are three potential components targets in PI3K/AKT pathways to therapy in the treatment of AML patient.


Sign in / Sign up

Export Citation Format

Share Document