scholarly journals Ship Security Relative Integrated Navigation with Injected Fault Measurement Attack and Unknown Statistical Property Noises

2020 ◽  
Vol 8 (5) ◽  
pp. 305 ◽  
Author(s):  
Yongjing Wang ◽  
Yi Wang ◽  
Xiaoliang Feng

In this work, the ship relative integrated navigation approaches are studied for the navigation scenarios with the measurements disturbed by unknown statistical property noises and with the injected fault measurement attacks. On the basis of the limited energy property of system noises, the navigation states are estimated by the local finite horizon H∞ filter to satisfy the performance index function. Then, the local estimates are fused in the relative integrated navigation system with the weight fusion parameters obtained by using the local estimate error measurements. Further, the injected fault measurement attacks are considered in the relative integrated navigation systems. Due to the system noises and the measurement noises having unknown statistical property, the classical Chi-square test can hardly be utilized to detect the injected fault measurements. Therefore, a secure relative integrated navigation method is proposed with a distance-based clustering detector. The finial simulation results illustrate the effectiveness of the proposed relative integrated navigation approach and the proposed secure relative integrated navigation approach.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5909
Author(s):  
Guangle Gao ◽  
Shesheng Gao ◽  
Genyuan Hong ◽  
Xu Peng ◽  
Tian Yu

In order to achieve a highly autonomous and reliable navigation system for aerial vehicles that involves the spectral redshift navigation system (SRS), the inertial navigation (INS)/spectral redshift navigation (SRS)/celestial navigation (CNS) integrated system is designed and the spectral-redshift-based velocity measurement equation in the INS/SRS/CNS system is derived. Furthermore, a new chi-square test-based robust Kalman filter (CSTRKF) is also proposed in order to improve the robustness of the INS/SRS/CNS navigation system. In the CSTRKF, the chi-square test (CST) not only detects measurements with outliers and in non-Gaussian distributions, but also estimates the statistical characteristics of measurement noise. Finally, the results of our simulations indicate that the INS/SRS/CNS integrated navigation system with the CSTRKF possesses strong robustness and high reliability.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Arash Mohammadi ◽  
Chun Yang ◽  
Qing-wei Chen

Motivated by rapid growth of cyberphysical systems (CPSs) and the necessity to provide secure state estimates against potential data injection attacks in their application domains, the paper proposes a secure and innovative attack detection and isolation fusion framework. The proposed multisensor fusion framework provides secure state estimates by using ideas from interactive multiple models (IMM) combined with a novel fuzzy-based attack detection/isolation mechanism. The IMM filter is used to adjust the system’s uncertainty adaptively via model probabilities by using a hybrid state model consisting of two behaviour modes, one corresponding to the ideal scenario and one associated with the attack behaviour mode. The state chi-square test is then incorporated through the proposed fuzzy-based fusion framework to detect and isolate potential data injection attacks. In other words, the validation probability of each sensor is calculated based on the value of the chi-square test. Finally, by incorporation of the validation probability of each sensor, the weights of its associated subsystem are computed. To be concrete, an integrated navigation system is simulated with three types of attacks ranging from a constant bias attack to a non-Gaussian stochastic attack to evaluate the proposed attack detection and isolation fusion framework.


Author(s):  

The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm. Keywords aircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 188 ◽  
Author(s):  
Heyone Kim ◽  
Junhak Lee ◽  
Sang Heon Oh ◽  
Hyoungmin So ◽  
Dong-Hwan Hwang

To avoid degradation of navigation performance in the navigation warfare environment, the multi-radio integrated navigation system can be used, in which all available radio navigation systems are integrated to back up Global Navigation Satellite System (GNSS) when the GNSS is not available. Before real-time multi-radio integrated navigation systems are deployed, time and cost can be saved when the modeling and simulation (M&S) software is used in the performance evaluation. When the multi-radio integrated navigation system M&S is comprised of independent function modules, it is easy to modify and/or to replace the function modules. In this paper, the M&S software design method was proposed for multi-radio integrated navigation systems as a GNSS backup under the navigation warfare. The M&S software in the proposed design method consists of a message broker and function modules. All the messages were transferred through the message broker in order to be exchanged between the function modules. The function modules in the M&S software were independently operated due to the message broker. A message broker-based M&S software was designed for a multi-radio integrated navigation system. In order to show the feasibility of the proposed design method, the M&S software was implemented for Global Positioning System (GPS), Korean Navigation Satellite System (KNSS), enhanced Long range navigation (eLoran), Loran-C, and Distance Measuring Equipment/Very high-frequency Omnidirectional Radio range (DME/VOR). The usefulness of the proposed design method was shown by checking the accuracy and availability of the GPS only navigation and the multi-radio integrated navigation system under the attack of jamming to GPS.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Xuchao Kang ◽  
Guangjun He ◽  
Xingge Li

Aiming at the problem that the accuracy and stability of SINS/BDS integrated navigation system decrease due to uncertain model and observation anomalies, a SINS/BDS integrated navigation method based on classified weighted adaptive filtering is proposed. Firstly, the innovation covariance matching technology is used to detect whether there is any abnormality in the system as a whole. Then the types of anomalies are distinguished by hypothesis test. Different types of anomalies have different effects on state estimation. Based on the dynamic changes of innovation, different adaptive weighting methods are adopted to correct navigation information. The simulation results show that this method can effectively improve the fault-tolerant performance of integrated navigation system in complex environment with unknown anomaly types. When both model anomalies and observation anomalies exist, the speed and position accuracy are increased by 42% and 24% compared with the standard KF, 38% and 22% compared with the innovation orthogonal adaptive filtering, which has higher navigation accuracy.


2011 ◽  
Vol 299-300 ◽  
pp. 1178-1181
Author(s):  
Tian Lai Xu ◽  
Yang Tian

This paper proposed and discussed an INS/GPS integrated navigation method based on radial basis function neural network (RBFNN) to fuse INS and GPS data. When GPS signals were available, an adaptive Kalman filter was used to improve the estimation accuracy of INS errors, and then the RBFNN structure was trained to mimic the dynamical error model of INS. If GPS signals were unavailable, the trained RBFNN structure was utilized to bridge the GPS outages to achieve seamless navigation. Simulations in INS/GPS integrated navigation system showed the proposed method can reduce the positioning error during GPS outages.


2014 ◽  
Vol 21 (1) ◽  
pp. 59-74 ◽  
Author(s):  
Krzysztof Jaskólski

AbstractThe problem of determining geographic position considered only in terms of measurement error, seems to be solved on a global scale. In view of the above, from the nineties, the operational characteristics of radio-navigation systems are equally important. The integrated navigation system operate in a multi-sensor environment and it is important to determinate a temporal validity of data to make it usable in data fusion process. In the age of digital data processing, the requirements for continuity, availability, reliability and integrity information are already grown. This article analyses the problem of time stamp discrepancies of dynamic position reports. For this purpose, the statistical summary of Latency Position Reports has been presented. The navigation data recordings were conducted during 30 days of March 2014 from 19 vessels located in area of Gulf of Gdansk. On the base of Latency Position Reports it is possible to designate the availability of AIS system.


2016 ◽  
Vol 70 (2) ◽  
pp. 291-308 ◽  
Author(s):  
Qiang Xiao ◽  
Huimin Fu ◽  
Zhihua Wang ◽  
Yongbo Zhang

Accurate navigation systems are required for future pinpoint Mars landing missions. A radio ranging augmented Inertial Measurement Unit (IMU) integrated navigation system concept is considered for the Mars entry navigation. The uncertain system parameters associated with the Three Degree-Of-Freedom (3-DOF) dynamic model, and the measurement systematic errors are considered. In order to improve entry navigation accuracy, this paper presents the Multiple Model Adaptive Rank Estimation (MMARE) filter of radio beacons/IMU integrated navigation system. 3-DOF simulation results show that the performances of the proposed navigation filter method, 70·39 m estimated altitude error and 15·74 m/s estimated velocity error, fulfill the need of future pinpoint Mars landing missions.


Sign in / Sign up

Export Citation Format

Share Document