scholarly journals Hydro- and Morphodynamic Impacts of Sea Level Rise: The Minho Estuary Case Study

2020 ◽  
Vol 8 (6) ◽  
pp. 441
Author(s):  
Willian Melo ◽  
José Pinho ◽  
Isabel Iglesias ◽  
Ana Bio ◽  
Paulo Avilez-Valente ◽  
...  

The understanding and anticipating of climate change impacts is one of the greatest challenges for humanity. It is already known that, until the end of the 21st century, the mean sea level (MSL) will rise at a global scale, but its effects at the local scale need to be further analyzed. In this context, a numerical modelling tool and a methodological approach for the river Minho estuary (NW of the Iberian Peninsula) are presented, to predict possible consequences of local MSL rise, considering the greenhouse emission scenarios RCP 4.5 and RCP 8.5. Hydrodynamic and morphodynamic impacts were analyzed considering several driving factors, such as tides, sea level rise, storm surge, wave set-up, and different river flood peak discharges, taking into account their probabilities of occurrence. The model was calibrated using in-situ data and a data assimilation tool, the OpenDA, which automates this process, allowing to reach reliable results in a considerably short time when compared with traditional techniques. The results forecast that the predicted MSL rise will reduce the flow velocity magnitude and the sediment transport into the coastal platform but will aggravate the inundation risks along the estuarine banks. In the worst scenario (RCP 8.5) the water level near the river mouth of the estuary is expected to rise 0.20 m for 50 years return period ocean water rising, and 0.60 m for 100 years return period. It was also possible to identify that floods are the most important driver for the sediment transport along the estuary, while the tide effect in the morphodynamics is restricted to the downstream estuarine region. This work demonstrated the importance of the numerical modelling tools to better understand the effects of climate change at local scales through the representation of the estuarine hydrodynamic pattern evolution for future climate scenarios.

2021 ◽  
Vol 13 (6) ◽  
pp. 1108
Author(s):  
Marco Anzidei ◽  
Giovanni Scicchitano ◽  
Giovanni Scardino ◽  
Christian Bignami ◽  
Cristiano Tolomei ◽  
...  

The global sea-level rise (SLR) projections for the next few decades are the basis for developing flooding maps that depict the expected hazard scenarios. However, the spatially variable land subsidence has generally not been considered in the current projections. In this study, we use geodetic data from global navigation satellite system (GNSS), synthetic aperture radar interferometric measurements (InSAR) and sea-level data from tidal stations to show the combined effects of land subsidence and SLR along the coast between Catania and Marzamemi, in south-eastern Sicily (southern Italy). This is one of the most active tectonic areas of the Mediterranean basin, which drives accelerated SLR, continuous coastal retreat and increasing effects of flooding and storms surges. We focus on six selected areas, which show valuable coastal infrastructures and natural reserves where the expected SLR in the next few years could be a potential cause of significant land flooding and morphological changes of the coastal strip. Through a multidisciplinary study, the multi-temporal flooding scenarios until 2100, have been estimated. Results are based on the spatially variable rates of vertical land movements (VLM), the topographic features of the area provided by airborne Light Detection And Ranging (LiDAR) data and the Intergovernmental Panel on Climate Change (IPCC) projections of SLR in the Representative Concentration Pathways RCP 2.6 and RCP 8.5 emission scenarios. In addition, from the analysis of the time series of optical satellite images, a coastal retreat up to 70 m has been observed at the Ciane river mouth (Siracusa) in the time span 2001–2019. Our results show a diffuse land subsidence locally exceeding 10 ± 2.5 mm/year in some areas, due to compacting artificial landfill, salt marshes and Holocene soft deposits. Given ongoing land subsidence, a high end of RSLR in the RCP 8.5 at 0.52 ± 0.05 m and 1.52 ± 0.13 m is expected for 2050 AD and 2100 AD, respectively, with an exposed area of about 9.7 km2 that will be vulnerable to inundation in the next 80 years.


2017 ◽  
Author(s):  
Luisa Perini ◽  
Lorenzo Calabrese ◽  
Paolo Luciani ◽  
Marco Olivieri ◽  
Gaia Galassi ◽  
...  

Abstract. As a consequence of climate change and human-induced land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and the urbanisation are particularly enhanced. We focus on the Emilia-Romagna coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is ~ 130 km long and is characterised by wide areas below sea level, in part reclaimed wetlands. In this context, several morphodynamic factors make the shore and back-shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise in consequence of climate change are expected to enhance the shoreline instability, leading to a further retreat. The consequent loss of beaches would impact the economy of the region, tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, crucial for the preservation of life and environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The IPCC AR5 sea-level scenarios are merged with new high resolution terrain models, current data for local subsidence and predictions of a flooding model (in_CoastFlood) to develop different scenarios for the impact of sea-level rise to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase of floodable areas in consequence of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.


Author(s):  
Aristeidis Mertzanis ◽  
Asimina Mertzani

The consequences of man-made interventions, Climate Change and future Sea-level rise upon some coastal plains of Greece are examined. Many urban, peri-urban areas and Natural Parks, in low elevation coastal zones in Greece are experiencing or are at risk of Sea-level rise, storm surges, water and soil pollution, saline water intrusion (salinity), coastal erosion and shoreline retreat, floods, and droughts. Sea-level rise could erode and inundate coastal ecosystems and disrupt wetlands, Urban and peri-Urban areas. Characteristic examples of these are the protected wetlands that exist in Greece such as those in the Delta and the river mouth areas of the Sperchios, Alfeios, Arachthos, Louros, and Inois rivers, and the small town of Tolo. Man-made interventions affect the coastal wetland ecosystems, Urban and peri-Urban areas under study. At the same time, an important factor of the destabilization of the ecological balance is the Climate Change and the expected sea-level rise. The main anthropogenic degradation and stresses on the under investigation areas, in recent decades, includes wetland draining, exsiccation of lagoons and lakes, river engineering works, dam construction, intensification and development of agriculture projects, sand mining from riverbeds and beaches, construction of motorways, construction of harbor structures, such as harbors, jetties, seawalls, groins, and breakwaters, rapid urbanization processes, holiday home building and tourist facilities, massive tourism and intense coastal development, water pollution, human-induced land subsidence (uncontrolled water abstraction from surface and underground water tables), and removal of coastal vegetation. Satellite images, maps and systematic in situ observations, integrated with the direct digitizing on the basis of different aged aerial photographs was adopted to estimate the coastal erosion and accretion rates in recent decades (1945-2019) in the areas, under study.


2017 ◽  
Vol 17 (12) ◽  
pp. 2271-2287 ◽  
Author(s):  
Luisa Perini ◽  
Lorenzo Calabrese ◽  
Paolo Luciani ◽  
Marco Olivieri ◽  
Gaia Galassi ◽  
...  

Abstract. As a consequence of climate change and land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and urbanisation are particularly enhanced. We focus on the Emilia-Romagna (E-R) coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is  ∼ 130 km long and is characterised by wide areas below mean sea level, in part made up of reclaimed wetlands. In this context, several morphodynamic factors make the shore and back shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise as a result of climate change are expected to enhance the shoreline instability, leading to further retreat. The consequent loss of beaches would impact the economy of the region, which is tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, which is crucial for the preservation of life and the environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) sea-level scenarios are merged with new high-resolution terrain models, current data for local subsidence and predictions of the flooding model in_CoastFlood in order to develop different scenarios for the impact of sea-level rise projected to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase in floodable areas as a result of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


2021 ◽  
Vol 13 (13) ◽  
pp. 7503
Author(s):  
Alexander Boest-Petersen ◽  
Piotr Michalak ◽  
Jamal Jokar Arsanjani

Anthropogenically-induced climate change is expected to be the contributing cause of sea level rise and severe storm events in the immediate future. While Danish authorities have downscaled the future oscillation of sea level rise across Danish coast lines in order to empower the coastal municipalities, there is a need to project the local cascading effects on different sectors. Using geospatial analysis and climate change projection data, we developed a proposed workflow to analyze the impacts of sea level rise in the coastal municipalities of Guldborgsund, located in Southeastern Denmark as a case study. With current estimates of sea level rise and storm surge events, the island of Falster can expect to have up to 19% of its landmass inundated, with approximately 39% of the population experiencing sea level rise directly. Developing an analytical workflow can allow stakeholders to understand the extent of expected sea level rise and consider alternative methods of prevention at the national and local levels. The proposed approach along with the choice of data and open source tools can empower other communities at risk of sea level rise to plan their adaptation.


Sign in / Sign up

Export Citation Format

Share Document