scholarly journals Hydrodynamic Analysis and Motions of Ship with Forward Speed via a Three-Dimensional Time-Domain Panel Method

2021 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
Peng Zhang ◽  
Teng Zhang ◽  
Xin Wang

A new three-dimensional (3D) time-domain panel method is developed to solve the ship hydrodynamic problem and motions. For an advancing ship with a constant forward speed in regular waves, the ship’s hull can be discretized and processed into a number of quadrilateral panels. Based on Green’s theorem, an analytical expression for Froude–Krylov (F–K) forces evaluation on the quadrilateral panels is derived without accuracy loss. Within the linear potential theory, the transient free surface Green function (TFSGF) is applied to solve the boundary value problem. To improve the efficiency and numerical stability of TFSGF evaluation, a precise integration method with variable parameters setting for extended identity matrix is developed to compute the TFSGF in the computation domain. Then, radiation and diffraction forces can be evaluated by means of the impulse response function method. The Wigley I hull form is taken as a study case, and the computed hydrodynamic coefficients, wave exciting forces, and motions by the present method are compared with previous literature experimental data and prior published results. It manifests that the three-dimensional time-domain panel method proposed in this paper has good accuracy.

1998 ◽  
Vol 42 (02) ◽  
pp. 113-119
Author(s):  
D. C. Kring

This study demonstrates that a bounded, physically relevant solution does exist at the so-called T = Uω/g = 1/4 resonance in the linear seakeeping problem for a realistic ship with forward speed, U, frequency of encounter, ω, and gravitational acceleration, g. The solution of the seakeeping problem by a linear, three dimensional, time-domain Rankine panel method, validated through numerical analysis, testing, and comparison to physical experiments, supports this claim. The solution can also be obtained with equal validity through frequencies both above and below the critical frequency.


Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
H. G. Sung

The radiation and diffraction potentials of a ship advancing in waves are calculated in the time-domain using the three-dimensional time-domain forward-speed free-surface Green function and the Green integral equation on the basis of the Neumann-Kelvin linear wave hypothesis. The Green function approximated by Newman for large time is used together with the Green function by Lamb for small time. The time-domain diffraction problem is solved for the time derivative of the potential by using the time derivative of the impulsive incident wave potential represented by using the complementary complex error function. The integral equation for the potential is discretized according to a second-order boundary element method where the collocation points are located inside the panel. It makes it possible to take account of the line integral along the waterline in a rigorous manner. The six-degree-of-freedom motion and memory functions as well as the diffraction impulse response functions of a hemisphere and the Wigley seakeeping model are presented for various Froude numbers. Comparisons of the wave damping and exciting force and moment coefficients for zero forward speed, calculated by using the Fourier transforms of the time-domain results and the frequency-domain coefficients calculated by using the improved Green integral equation which is free of the irregular frequencies, have been shown to be satisfactory. The wave damping coefficients for non-zero forward speed, calculated by using Fourier transforming of the present time-domain results have also been compared to the experimental results and agreement between them has been shown to be good. A simulation of coupled heave-pitch motion of the Wigley seakeeping model advancing in regular head waves of unit amplitude has been carried out.


2005 ◽  
Vol 49 (02) ◽  
pp. 144-158 ◽  
Author(s):  
F. Kara ◽  
D. Vassalos

The Ship Stability Research Centre, Department of Naval Architecture and Marine Engineering, The Universities of Glasgow and Strathclyde, Scotland, UKA linearized three-dimensional potential flow formulation in time domain is applied to calculate wave-making resistance of ships in calm water. Steady-state perturbation potentials for resistance are obtained as the steady-state limit of the surge radiation impulse response function using the transient free surface source distribution over the body surface. Five different vessels are used to validate the present numerical approximation. The results, including steady-state wave-making resistance, sinkage force, trim moment, and wave profile along the waterline, are compared with other published numerical and experimental results.


Author(s):  
Tomoki Ikoma ◽  
Koichi Masuda ◽  
Chang-Kyu Rheem ◽  
Hisaaki Maeda ◽  
Mayumi Togane

This paper describes hydroelastic motion and effect of motion reduction of aircushion supported large floating structures. Motion reduction effects due to presence of aircushions have been confirmed from theoretical calculations with the zero-draft assumption. A three-dimensional prediction method has been developed for considering draft influence of division walls of aircushions. It is investigated that hydroelastic motion reduction is possible or not by using the three-dimensional theoretical calculations. In addition, the aircushion types are supported by many aircushions which are small related to wavelengths. The Green’s function method is applied to the prediction method with the linear potential theory in which effect of free water surfaces within aircushions are considered. Hydroelastic responses are estimated as not only elastic motion but also a vertical bending moment. From the results, the response reduction is confirmed, in particular, to the vertical bending moment in wide wavelength range and in whole structure area.


1994 ◽  
Vol 281 ◽  
pp. 159-191 ◽  
Author(s):  
Andreas Dillmann

Based on linear potential theory, the general three-dimensional problem of steady supersonic flow inside quasi-cylindrical ducts is formulated as an initial-boundary-value problem for the wave equation, whose general solution arises as an infinite double series of the Fourier–Bessel type. For a broad class of solutions including the general axisymmetric case, it is shown that the presence of a discontinuity in wall slope leads to a periodic singularity pattern associated with non-uniform convergence of the corresponding series solutions, which thus are unsuitable for direct numerical computation. This practical difficulty is overcome by extending a classical analytical method, viz. Kummer's series transformation. A variety of elementary flow fields is presented, whose complex cellular structure can be qualitatively explained by asymptotic laws governing the propagation of small perturbations on characteristic surfaces.


Author(s):  
Debasmit Sengupta ◽  
Ranadev Datta ◽  
Debabrata Sen

A semi analytic three-dimensional time domain method is developed to predict the hydroelastic effect due to wave induced loads on a floating body. The methodology being a semi analytic approach is able to capture real life scenario of bending of a ship like structure on sea taking both flexural and torsional vibrations. A prismatic beam equation with analytically defined modeshapes is taken into consideration to represent the structural response. The elastic deformation is solved using modal superposition technique. The radiation forces for elastic modes are obtained through impulse response function in time domain where frequency domain added mass, damping coefficients and wave exciting forces for the flexible modes are derived from a frequency domain panel method code. The Duhamel integral is employed in order to get the flexural and torsional deflection, velocity. A rectangular barge with zero forward speed is chosen for the analysis. Structural responses, torque, bending moments are calculated to assess the wave induced loads on the floating elastic body. The proposed technique, developed in Fortran, appears to be robust, efficient and computationally less expensive and can be used to predict the wave induced loads on a flexible structure as a first approximation in the initial design stage.


2010 ◽  
Vol 54 (02) ◽  
pp. 79-94 ◽  
Author(s):  
Xinshu Zhang ◽  
Piotr Bandyk ◽  
Robert F. Beck

Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.


Author(s):  
Huawei Zhou ◽  
Fuhua Wang ◽  
Renchuan Zhu ◽  
Kaiyuan Shi

Ship parametric roll is one of the main reasons for marine accidents and is introduced into the second-generation intact stability criteria by the International Maritime Organization (IMO) recently. In this paper, a 6-DOF three-dimensional time-domain model based on the IRF (Impulse Response Function) method is constructed to predict large-amplitude ship motions and investigate the phenomenon of parametric roll in head waves as well as major factors. The F-K forces and the restoring forces are calculated on the instantaneous wet surface while the radiation and diffraction forces are kept linear and transformed from frequency-domain results calculated with the three-dimensional Havelock form translating-pulsating source green function method. The proposed weakly nonlinear time-domain model is used to simulate motions of the C11 containership, which predicts the occurrence of the parametric roll successfully and shows a good agreement with the experimental data in amplitude. The inner mechanism of parametric roll is revealed by investigating the time-history and resonance frequencies of restoring forces and coefficients numerically.


Sign in / Sign up

Export Citation Format

Share Document