Time Domain Computation of the Wave-Making Resistance of Ships

2005 ◽  
Vol 49 (02) ◽  
pp. 144-158 ◽  
Author(s):  
F. Kara ◽  
D. Vassalos

The Ship Stability Research Centre, Department of Naval Architecture and Marine Engineering, The Universities of Glasgow and Strathclyde, Scotland, UKA linearized three-dimensional potential flow formulation in time domain is applied to calculate wave-making resistance of ships in calm water. Steady-state perturbation potentials for resistance are obtained as the steady-state limit of the surge radiation impulse response function using the transient free surface source distribution over the body surface. Five different vessels are used to validate the present numerical approximation. The results, including steady-state wave-making resistance, sinkage force, trim moment, and wave profile along the waterline, are compared with other published numerical and experimental results.

1973 ◽  
Vol 24 (1) ◽  
pp. 25-33
Author(s):  
J W Craggs ◽  
K W Mangler ◽  
M Zamir

SummaryWhen the incompressible potential flow past a three-dimensional body is represented by source distributions on the body surface, these source distributions have singularities near an edge or corner, for example á trailing edge of a wing or the (unfaired) intersection of a body and a wing. The nature of these singularities is discussed. When assuming slow variations of the geometry in the main flow direction we can consider a two-dimensional problem in the cross-flow plane. Here the tangential velocities and source distributions are proportional to certain powers of the distance from the corner. For example at a convex right-angled corner these powers are − ⅓ in the asymmetric case (the bisector is a potential line) and ⅓ in the symmetric case (the bisector is a streamline) for both sources and tangential velocities. At a concave right-angled corner the corresponding values for the source distributions are ⅓ (asymmetric case) and − ⅓ (symmetric case) whereas they are 1 and 3 respectively for the tangential velocities.


2002 ◽  
Vol 205 (19) ◽  
pp. 2997-3008 ◽  
Author(s):  
Ravi Ramamurti ◽  
William C. Sandberg ◽  
Rainald Löhner ◽  
Jeffrey A. Walker ◽  
Mark W. Westneat

SUMMARY Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists,biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin,and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier—Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.


Author(s):  
Debasmit Sengupta ◽  
Ranadev Datta ◽  
Debabrata Sen

A semi analytic three-dimensional time domain method is developed to predict the hydroelastic effect due to wave induced loads on a floating body. The methodology being a semi analytic approach is able to capture real life scenario of bending of a ship like structure on sea taking both flexural and torsional vibrations. A prismatic beam equation with analytically defined modeshapes is taken into consideration to represent the structural response. The elastic deformation is solved using modal superposition technique. The radiation forces for elastic modes are obtained through impulse response function in time domain where frequency domain added mass, damping coefficients and wave exciting forces for the flexible modes are derived from a frequency domain panel method code. The Duhamel integral is employed in order to get the flexural and torsional deflection, velocity. A rectangular barge with zero forward speed is chosen for the analysis. Structural responses, torque, bending moments are calculated to assess the wave induced loads on the floating elastic body. The proposed technique, developed in Fortran, appears to be robust, efficient and computationally less expensive and can be used to predict the wave induced loads on a flexible structure as a first approximation in the initial design stage.


1985 ◽  
Vol 157 ◽  
pp. 17-33 ◽  
Author(s):  
J. N. Newman

A linear theory is developed in the time domain for vertical motions of an axisymmetric cylinder floating in the free surface. The velocity potential is obtained numerically from a discretized boundary-integral-equation on the body surface, using a Galerkin method. The solution proceeds in time steps, but the coefficient matrix is identical at each step and can be inverted at the outset.Free-surface effects are absent in the limits of zero and infinite time. The added mass is determined in both cases for a broad range of cylinder depths. For a semi-infinite cylinder the added mass is obtained by extrapolation.An impulse-response function is used to describe the free-surface effects in the time domain. An oscillatory error observed for small cylinder depths is related to the irregular frequencies of the solution in the frequency domain. Fourier transforms of the impulse-response function are compared with direct computations of the damping and added-mass coefficients in the frequency domain. The impulse-response function is also used to compute the free motion of an unrestrained cylinder, following an initial displacement or acceleration.


2010 ◽  
Vol 54 (02) ◽  
pp. 79-94 ◽  
Author(s):  
Xinshu Zhang ◽  
Piotr Bandyk ◽  
Robert F. Beck

Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.


1987 ◽  
Vol 31 (03) ◽  
pp. 164-176 ◽  
Author(s):  
Robert F. Beck ◽  
Stergios Liapis

Linear, time-domain analysis is used to solve the radiation problem for the forced motion of a floating body at zero forward speed. The velocity potential due to an impulsive velocity (a step change in displacement) is obtained by the solution of a pair of integral equations. The integral equations are solved numerically for bodies of arbitrary shape using discrete segments on the body surface. One of the equations must be solved by time stepping, but the kernel matrix is identical at each step and need only be inverted once. The Fourier transform of the impulse-response function gives the more conventional added-mass and damping in the frequency domain. The results for arbitrary motions may be found as a convolution of the impulse response function and the time derivatives of the motion. Comparisons are shown between the time-domain computations and published results for a sphere in heave, a sphere in sway, and a right circular cylinder in heave. Theoretical predictions and experimental results for the heave motion of a sphere released from an initial displacement are also given. In all cases the comparisons are excellent.


1970 ◽  
Vol 2 (1) ◽  
pp. 15-20 ◽  
Author(s):  
P Liu ◽  
B Colbourne ◽  
Chin Shin

An unsteady 3D surface panel method has been developed to predict hydrodynamic load fluctuations on an ice class propeller induced by continuous variation of proximity to an ice block. The low order, time domain, combined doublet and source panel method approximates the doublet and source distribution uniformly over each panel on the propeller blades. For non-lifting bodies, i.e., the hub and ice block, only sources are distributed over the body surfaces. The simulation model is contrived in such a manner that the ice block and surrounding fluid remain stationary; and at each time step, the propeller rotates and advances forward in the inertial reference frame. This numerical model is validated with previous fixed-proximity experimental measurements and good agreement is obtained. Prediction of the fluctuating hydrodynamic load is carried out as a full dynamic interaction between the ice block and the propeller. Results for this study are compared with previous fixed-proximity numerical models and experiments. The new dynamic model establishes a basis for analysis of a more realistic fluid-structure interaction, which could, in the future, include ice block acceleration due to suction force and ice block impact loading on the propeller blade and shaft. Keywords: Marine Propulsion, Panel Methods, Unsteady Loading, Ice-Propeller Interaction doi: 10.3329/jname.v2i1.2026 Journal of Naval Architecture and Marine Engineering 2(1)(2005) 15-20


2018 ◽  
Vol 26 (3) ◽  
pp. 369-394 ◽  
Author(s):  
Masaru Ikehata

AbstractA mathematical formulation of an estimation problem of a cavity inside a three-dimensional thermoelastic body by using time domain data is considered. The governing equation of the problem is given by a system of equations in the linear theory of thermoelasticity which is a coupled system of the elastic wave and heat equations. A new version of the enclosure method in the time domain which is originally developed for the classical wave equation is established. For a comparison, the results in the decoupled case are also given.


2006 ◽  
Vol 14 (04) ◽  
pp. 445-467 ◽  
Author(s):  
MARC BERNACKI ◽  
SERGE PIPERNO

We present in this paper a time-domain discontinuous Galerkin dissipation-free method for the transient solution of the three-dimensional linearized Euler equations around a steady-state solution. In the general context of a nonuniform supporting flow, we prove, using the well-known symmetrization of Euler equations, that some aeroacoustic energy satisfies a balance equation with source term at the continuous level, and that our numerical framework satisfies an equivalent balance equation at the discrete level and is genuinely dissipation-free. In the case of ℙ1 Lagrange basis functions and tetrahedral unstructured meshes, a parallel implementation of the method has been developed, based on message passing and mesh partitioning. Three-dimensional numerical results confirm the theoretical properties of the method. They include test-cases where Kelvin–Helmholtz instabilities appear.


2007 ◽  
Vol 51 (03) ◽  
pp. 267-284
Author(s):  
Ranadev Datta ◽  
Debabrata Sen

In this paper, a B-spline-based higher-order method is developed for simulating three-dimensional ship motions with forward speed. The problem is formulated in time domain using a transient free surface Green function. The body geometry is defined by open uniform or nonuniform B-spline basis functions depending on the hull type, whereas the unknown field variables are described by open uniform B-spline basis functions. The collocation method is applied to discretize the integral equation and then solved for the unknown potentials and source strengths. Motion computations in head waves are carried out for three types of ship hulls: a mathematically defined Wigley hull, a typical containership (S175 hull), and a Series 60 hull. Results are obtained for regular and irregular waves and compared with available experimental and computational results. It is found that the results from the present method are in very good agreement with the published results, and in particular with experimental data. Long-duration simulations have also been carried out with an ordinary desktop PC (PIV with 512 MB RAM) to demonstrate the ability of the method to simulate motions over long periods without any visible deterioration using only modest computational resources.


Sign in / Sign up

Export Citation Format

Share Document