scholarly journals Review and Prospects for Autonomous Observing Systems in Vessels of Opportunity

2021 ◽  
Vol 9 (4) ◽  
pp. 366
Author(s):  
Teresa L. Rosa ◽  
A. Miguel Piecho-Santos ◽  
Roberto Vettor ◽  
C. Guedes Soares

This paper focuses on the state of the art on Autonomous Observing Systems (AOS) used in Vessels of Opportunity (VOO) for collecting in situ atmospheric, oceanic and biogeochemical data. The designation Vessels of Opportunity includes all kinds of ships, even if not having scientific goals, which may carry proper devices that autonomously measure environmental variables. These vessels can be merchant, military, research, cruise liners, fishing, ferries, or even private yachts or sailing boats. The use of AOS can provide the opportunity for highly refined oceanographic data and improved derived data estimation, for local, regional or global scales studies. However, making the collected information accessible, both for scientific and technical purposes, provides a challenge in data management and analysis, which must, above all, ensure trusted useful data to the stakeholders. An overall review of the systems implemented is presented. This includes the definition of objectives, the recruitment of vessels and a review on the installation of proper acquisition devices; the selection and collection of Essential Oceanic Variables (EOV); the mechanisms for transmitting the information, and the quality control analysis and dissemination of data. The present and future capabilities of VOO for measuring EOV, within the Portuguese context are referred.

Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
W Ahmad ◽  
MS Khan ◽  
SMA Zaidi ◽  
SS Jameel ◽  
S Ahmad

2019 ◽  
Vol 15 (2) ◽  
pp. 130-137
Author(s):  
Hui Jiang ◽  
Lianhao Fu ◽  
Yu Wang ◽  
Shaozhi Wang ◽  
Xiaoxu Zhang ◽  
...  

Background: Jingzhiguanxin (JZGX) tablet, a traditional Chinese prescription, is commonly used for treating coronary heart disease and angina pectoris in the clinic. There are six active components (Danshensu (DSS), Protocatechuic aldehyde (PD), Paeoniflorin (PF), Ferulic acid (FA), Salvianolic acid B (Sal B) and Tanshinone IIA (TA)) in JZGX tablet. </P><P> Objective: In this paper, a simple and reliable method was used for simultaneous determining the six active components by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Methods: These six active components were separated on an Agilent Zorbax Eclipse XDB-C18 column (150 mmx4.6 mm, 5 µm) at 30 °C. Acetonitrile (A), methanol (B) and 0.5% H3PO4 aqueous solution (C) were used as mobile phase for gradient elution. The flow rate was 1 mL/min and the detection wavelengths were set at 280 nm for DSS, PD and Sal B, 230 nm for PF, 320 nm for FA and 270 nm for TA, respectively. Results: All of the six components showed good linearity regressions (r2≥0.9997) in the detected concentration range. The recovery rates and coefficient of variation (CV) for all analytes were 98.66%- 100.18% and 0.75%-1.89%, respectively. This method was successfully applied to simultaneously determine the six components in JZGX tablet from different batches and manufacturers. Conclusion: The validated method can be used in routine quality control analysis of JZGX tablet without any interference.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2021 ◽  
pp. 088541222199424
Author(s):  
Mauro Francini ◽  
Lucia Chieffallo ◽  
Annunziata Palermo ◽  
Maria Francesca Viapiana

This work aims to reorganize theoretical and empirical research on smart mobility through the systematic literature review approach. The research goal is to reach an extended and shared definition of smart mobility using the cluster analysis. The article provides a summary of the state of the art that can have broader impacts in determining new angles for approaching research. In particular, the results will be a reference for future quantitative developments for the authors who are working on the construction of a territorial measurement model of the smartness degree, helping them in identifying performance indicators consistent with the definition proposed.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1091
Author(s):  
Izaak Van Crombrugge ◽  
Rudi Penne ◽  
Steve Vanlanduit

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards, requiring some level of overlap between cameras. In this work, we propose a method for cases with little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector. The pose of the plane and cameras is then optimized using bundle adjustment to match the lines seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines and the field of view of the cameras is needed. Real-world experiments were conducted both with and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the accuracy is comparable to other state-of-the-art methods while offering a more practical procedure. The method can also be used in large-scale applications and can be fully automated.


2020 ◽  
Vol 40 (04) ◽  
pp. 524-535
Author(s):  
Dmitry Y. Nechipurenko ◽  
Aleksey M. Shibeko ◽  
Anastasia N. Sveshnikova ◽  
Mikhail A. Panteleev

AbstractComputational physiology, i.e., reproduction of physiological (and, by extension, pathophysiological) processes in silico, could be considered one of the major goals in computational biology. One might use computers to simulate molecular interactions, enzyme kinetics, gene expression, or whole networks of biochemical reactions, but it is (patho)physiological meaning that is usually the meaningful goal of the research even when a single enzyme is its subject. Although exponential rise in the use of computational and mathematical models in the field of hemostasis and thrombosis began in the 1980s (first for blood coagulation, then for platelet adhesion, and finally for platelet signal transduction), the majority of their successful applications are still focused on simulating the elements of the hemostatic system rather than the total (patho)physiological response in situ. Here we discuss the state of the art, the state of the progress toward the efficient “virtual thrombus formation,” and what one can already get from the existing models.


Sign in / Sign up

Export Citation Format

Share Document