scholarly journals Mesh Properties for RANS Simulations of Airfoil-Shaped Profiles: A Case Study of Rudder Hydrodynamics

2021 ◽  
Vol 9 (10) ◽  
pp. 1062
Author(s):  
Suli Lu ◽  
Jialun Liu ◽  
Robert Hekkenberg

A good mesh is a prerequisite for achieving reliable results from Computational Fluid Dynamics (CFD) calculations. Mesh properties include mesh types, computational domain sizes, and node distributions. However, in literature, we found no clear consensus about what these properties should be. In this article, we performed a case study on ship rudders to determine what the suitable mesh properties are for airfoil-shaped profiles. A classic NACA 0012 profile is chosen as an example, and commercial packages ANSYS ICEM are applied for meshing with an ANSYS Fluent solver. With a strategy in consideration of relationships among different mesh properties, a comprehensive parametric investigation is conducted to study the impacts of these properties on the accuracy of rudder hydrodynamic coefficients obtained by CFD methods. The step-by-step study outputs recommended Reynolds numbers, domain sizes, and near- and far-field node distributions for mesh types with distinct topology structures, i.e., C-mesh, O-mesh, H-mesh, and Hybrid-mesh. Specifically, the study shows that a critical Reynolds number is needed for the perspective of efficiency, while a domain extending 60 times of the chord length enables the boundary effects to be negligible. As for node distributions, the near-field nodes should be treated carefully, compared with those in the far-field. After that, corresponding mesh properties for different calculation objectives are illustrated in detail based on the characteristics of mesh types mentioned above. With the proposed strategy for mesh refinements, impacts of different mesh properties on rudder hydrodynamics are clarified and recommended settings are applicable for other airfoil-shaped profiles such as wind turbines and marine propellers.

2001 ◽  
Vol 11 (04) ◽  
pp. 565-599 ◽  
Author(s):  
CRISTIAN A. COCLICI ◽  
WOLFGANG L. WENDLAND

We analyze a nonoverlapping domain decomposition method for the treatment of two-dimensional compressible viscous flows around airfoils. Since at some distance to the given profile the inertial forces are strongly dominant, there the viscosity effects are neglected and the flow is assumed to be inviscid. Accordingly, we consider a decomposition of the original flow field into a bounded computational domain (near field) and a complementary outer region (far field). The compressible Navier–Stokes equations are used close to the profile and are coupled with the linearized Euler equations in the far field by appropriate transmission conditions, according to the physical properties and the mathematical type of the corresponding partial differential equations. We present some results of flow around the NACA0012 airfoil and develop an a posteriori analysis of the approximate solution, showing that conservation of mass, momentum and energy are asymptotically attained with the linear model in the far field.


1983 ◽  
Vol 27 (01) ◽  
pp. 56-74
Author(s):  
Frederick Stern ◽  
William S. Vorus

A method is presented which provides a basis for predicting the nonlinear dynamic behavior of unsteady propeller sheet cavitation. The method separates the fluid velocity potential boundary-value problem into two parts, static and dynamic, which are solved sequentially in a forward time stepping procedure. The static potential problem is for the cavity fixed instantaneously relative to the propeller and the propeller translating through the nonuniform wake field. This problem can be solved by standard methods. The dynamic potential represents the instantaneous reaction of the cavity to the static potential field and thus predicts the cavity's deformation and motion relative to the blade. A solution is obtained for the dynamic potential by using the concepts of slender-body theory to define near-and far-field potentials which are matched to form the complete solution. In the far field, the cavity is represented by a three-dimensional spanwise line distribution of sources. In the near field, the cavity is approximated at each cross section as a semi-ellipse with unknown axes a(t), b(t), and position l(t) along the chord of the foil section. Conditions are derived that determine (a, b, l) by minimizing the square error in satisfying the dynamic boundary condition. These conditions yield the equations of motion of the cavity in the form of three coupled nonlinear second-order ordinary differential equations with time as the independent variable. The theory is presented for the general foil and not specifically for propellers. However, the method incorporates features in its formulation which facilitate its application to marine propellers. The method is demonstrated by using the steady noncavitating potential for the two-dimensional half-body as an approximation to the static potential. Both fixed and unsteady cavities are calculated. The unsteady cavities are calculated by varying the hydrostatic pressure in the half-body pressure field sinusoidally.


2019 ◽  
Vol 286 ◽  
pp. 07006
Author(s):  
A. Agriss ◽  
M. Agouzoul ◽  
A. Ettaouil

The idea behind this work comes from the question: What is the impact of plate corrugations on drag? In this context, a numerical study of laminar incompressible flow over a flat plate and over corrugated plates is carried out. Numerical analysis is performed for low Reynolds numbers (Re= 10, Re = 50, Re = 100, Re = 500, Re =1000) using the computational fluid dynamics (CFD) software ANSYS FLUENT. Simulations results are compared to each others and with those of the reference plate (flat plate (figure 4a)). Comparisons are made via drag coefficient Cd. This work is the beginning of a study that evaluates the impact of corrugations on drag reduction on a flat plate.


2019 ◽  
Vol 213 ◽  
pp. 02007
Author(s):  
Fatima Bouregba ◽  
Mustapha Belkadi ◽  
Mohammed Aounallah ◽  
Lahouari Adjlout

This paper deals with numerical simulation of stationary flow around a marine propeller. The aim is to reproduce the hydrodynamic turbulent flow around the Wageningen B serie propellers in open water using the ANSYS FLUENT code and the RANS approach. The computational domain consists of an inter-blade channel with periodic boundaries, meshed with tetrahedral cells. The turbulence is modeled with the k-ω. The obtained results provide good agreement with the available experimental data and show that the blades number affects considerably the marine propellers performances. It is interesting to notice that the six blades propeller is the best adapted one for the open water flows.


Author(s):  
Peter Fantke ◽  
Weihsueh A. Chiu ◽  
Lesa Aylward ◽  
Richard Judson ◽  
Lei Huang ◽  
...  

Abstract Purpose Reducing chemical pressure on human and environmental health is an integral part of the global sustainability agenda. Guidelines for deriving globally applicable, life cycle–based indicators are required to consistently quantify toxicity impacts from chemical emissions as well as from chemicals in consumer products. In response, we elaborate the methodological framework and present recommendations for advancing near-field/far-field exposure and toxicity characterization, and for implementing these recommendations into the scientific consensus model USEtox. Methods An expert taskforce was convened by the Life Cycle Initiative hosted by UN Environment to expand existing guidance for evaluating human toxicity impacts from exposure to chemical substances. This taskforce evaluated scientific advances since the original release of USEtox and identified two major aspects that required refinement, namely integrating near-field and far-field exposure, and improving human dose-response modeling. Dedicated efforts have led to a set of recommendations to address these aspects in an update of USEtox, while ensuring consistency with the boundary conditions for characterizing life cycle toxicity impacts and being aligned with recommendations from agencies that regulate chemical exposure. The proposed updated USEtox framework was tested in an illustrative rice production and consumption case study. Results and discussion On the exposure side, a matrix system is proposed and recommended to integrate far-field exposure from environmental emissions with near-field exposure from chemicals in various consumer product types. Consumer exposure is addressed via sub-models for each product type to account for product type-specific characteristics and exposure settings. Case study results illustrate that product use–related exposure dominates overall life cycle exposure. On the effect side, a probabilistic dose-response approach combined with a decision tree for identifying reliable points of departure is proposed for non-cancer effects, following recent guidance from the World Health Organization. This approach allows for explicitly considering both uncertainty and human variability in toxicity effect factors. Factors reflecting disease severity are proposed to distinguish cancer from non-cancer effects and within the latter to discriminate reproductive/developmental and other non-cancer effects. All proposed aspects have been consistently implemented into the original USEtox framework. Conclusions The recommended methodological advancements address several key limitations in earlier approaches. Next steps are to test the new characterization framework in additional case studies and to close remaining research gaps. Our framework is applicable for evaluating chemical emissions and product-related exposure in life cycle assessment, chemical alternatives assessment and chemical substitution, consumer exposure and risk screening, and high-throughput chemical prioritization.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 72-82
Author(s):  
Mostafa Abobaker ◽  
Sogair Addeep ◽  
Abdulhafid M. Elfaghi

Possible interference effects of the wind tunnel walls play an important role especially for measurements in closed-wall test sections. In this study, a numerical analysis of two-dimensional subsonic flow over a NACA 0012 airfoil at different computational domain heights, angles of attack from 0o to 10o, and operating Reynolds number of 6×106 is presented. The work highlights the role of computational fluid dynamics (CFD) in the investigation of wind tunnel wall effect on lift curve slope correction factor (Ka). The flow solution is obtained using Ansys Fluent software by solving the steady-state continuity and momentum governing equations combined with turbulence model k-v shear stress transport (SST-K?). The numerical results are validated by comparing with the available experimental measurements. Calculations show that the lift curve slope correction results are very close to the published data.


2014 ◽  
Vol 664 ◽  
pp. 111-116 ◽  
Author(s):  
R.K. Ganesh Ram ◽  
Yashaan Nari Cooper ◽  
Vishank Bhatia ◽  
R. Karthikeyan ◽  
C. Periasamy

CFD method is inexpensive method of analysis of flow over aerodynamic structure. It incorporates mathematical relations and algorithms to analyze and solve the problems regarding fluid flow. CFD analysis of an airfoil produces results such as lift and drag forces which determines the ability of an airfoil. Optimization of an airfoil involves improving the design of the airfoil in order to manipulate the lift and drag coefficients according to the requirements. It is a very common method used in all fields of engineering. MATLAB is a numerical computing environment which supports interface with other software. XFoil is airfoil analysis software which calculates the lift and drag characteristics for different Reynolds numbers, Mach numbers and angles of attack. MALAB is interfaced with XFoil and the optimization of NACA 0012 airfoil is done and the results are analyzed. The performance of optimized air foil is analyzed using ANSYS FLUENT software.


2018 ◽  
Vol 46 ◽  
pp. 00026
Author(s):  
Katarzyna Suder-Dębska ◽  
Dawid Romik ◽  
Ireneusz Czajka

In the paper the authors presented and compared two methods of the HAWT noise predicting. The priority, however, was to test the possibility of using Amiet's theory to determine the noise value in the far field. In this theory it is necessary to know the value of the turbulence intensity coefficient. The value of this coefficient was determined based on numerical modeling. The NACA 0012 profile was used for the airfoil shape. The ANSYS/Fluent program was used for numerical calculations, where the k-ω SST turbulence model was used to simulate the flow, and Ffocs- Williams and Hawkings model was used to determine the noise level. The turbulence intensity coefficient estimated in this way was then used to determine the noise value from the wind turbine airfoils using Amiet's theory.


2019 ◽  
Vol 9 (18) ◽  
pp. 3838 ◽  
Author(s):  
Ko ◽  
Jeong ◽  
Lee ◽  
Lee

This study aims to numerically analyze the near-field propagation behavior of hazardous and noxious substances (HNSs) and to develop a new metamodel for HNS propagation. Extensive computational fluid dynamics (CFD) simulations were conducted using the ANSYS FLUENT (V. 17.2) code for various HNS spill scenarios. We newly introduced several key parameters, including the streamwise propagation velocity, transverse propagation velocity, and averaged HNS mass fraction. From the results, the advection effect is more dominant with an increase in the current velocity and streamwise propagation velocity, and with a decrease in the transverse propagation velocity. Also, the HNS mass fraction decreases as the current velocity increases with the change of concentration and propagation area. Particularly, a new metamodel of HNS propagation based on the current CFD results was validated by the hidden point test, showing very good fit. We believe this model would make useful predictions under various scenarios without CFD simulations.


Author(s):  
Yasemin Vural ◽  
Suryanarayana R. Pakalapati ◽  
Ismail B. Celik

A continuity outlet boundary condition for the Lattice Boltzmann Method (LBM) is proposed based on the assurance of the mass conservation of the system. The main advantage of the proposed boundary condition over the conventional Computational Fluid Dynamics (CFD) techniques is that the macroscopic properties, e.g. velocity, pressure etc. are not needed to be prescribed at the outlet, these properties are automatically calculated with the imposed boundary condition. This is especially useful in practice where the macroscopic properties at the outlet are difficult or impossible to be measured and described as in the biological flows. In order to test the feasibility of the proposed method, the LBM simulations are first verified for its capability to simulate flow in a symmetrically bifurcated channel. Then asymmetrically bifurcated geometries representing the blood vessels have been designed with different bifurcation angles. The new boundary condition is also tested for multi-component LBM simulations. For these cases, LBM predictions have been compared with the predictions for the commercial CFD software, namely ANSYS FLUENT at different Reynolds numbers. The results show that there is a good agreement between the LBM and FLUENT predictions, and this proves the capability of the proposed boundary condition as a viable method that can be used in practice.


Sign in / Sign up

Export Citation Format

Share Document