scholarly journals Dynamic Landing Control of a Quadrotor on the Wave Glider

2021 ◽  
Vol 9 (10) ◽  
pp. 1119
Author(s):  
Zhilin Lyu ◽  
Weitao Ding ◽  
Xiujun Sun ◽  
Hongqiang Sang ◽  
Ying Zhou ◽  
...  

Aiming at the problems of difficult attitude stabilization, low landing accuracy, large external disturbance and slow dynamic response during the quadrotor dynamic landing on the wave glider, an improved series active disturbance rejection control method for the quadrotor is proposed. The quadrotor controller with inner-loop attitude angular velocity control and outer-loop position control based on the active disturbance rejection controller (ADRC) is designed by analyzing the dynamic model of the quadrotor. A tracking differentiator (TD) is adopted to track the input signal, and an expansive state observer (ESO) is used to estimate the total disturbance. Moreover, a nonlinear law state error feedback (NLSEF) is used to generate the virtual control volume of the system to realize the control of the quadrotor, and the stability of the cascaded self-turbulent controller is verified by Lyapunov’s theory. The simulation verifies that the proposed controller can accurately control the attitude and the position with better anti-interference capability and faster tracking speed. According to the final sea trial, a combination of an active disturbance rejection controller optimized with improved crow search algorithm (ICADRC) and April Tag visual reference system is used to land the quadrotor efficiently and successfully even under the surface float attitude uncertainty.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chuang Cheng ◽  
Hui Zhang ◽  
Hui Peng ◽  
Zhiqian Zhou ◽  
Bailiang Chen ◽  
...  

Purpose When the mobile manipulator is traveling on an unconstructed terrain, the external disturbance is generated. The load on the end of the mobile manipulator will be affected strictly by the disturbance. The purpose of this paper is to reject the disturbance and keep the end effector in a stable pose all the time, a control method is proposed for the onboard manipulator. Design/methodology/approach In this paper, the kinematics and dynamics models of the end pose stability control system for the tracked robot are built. Through the guidance of this model information, the control framework based on active disturbance rejection control (ADRC) is designed, which keeps the attitude of the end of the manipulator stable in the pitch, roll and yaw direction. Meanwhile, the control algorithm is operated with cloud computing because the research object, the rescue robot, aims to be lightweight and execute work with remote manipulation. Findings The challenging simulation experiments demonstrate that the methodology can achieve valid stability control performance in the challenging terrain road in terms of robustness and real-time. Originality/value This research facilitates the stable posture control of the end-effector of the mobile manipulator and maintains it in a suitable stable operating environment. The entire system can normally work even in dynamic disturbance scenarios and uncertain nonlinear modeling. Furthermore, an example is given to guide the parameter tuning of ADRC by using model information and estimate the unknown internal modeling uncertainty, which is difficult to be modeled or identified.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1249 ◽  
Author(s):  
Hui Li ◽  
Xinxiu Liu ◽  
Junwei Lu

This paper proposes a cascade control strategy based on linear active disturbance rejection control (LADRC) for a boost DC/DC converter. It solves the problem that the output voltage of boost converter is unstable due to non-minimum phase characteristics, input voltage and load variation. Firstly, the average state space model of boost converter is established. Secondly, a new output variable is selected, and a cascade control is adopted to solve the problems of narrow bandwidth and poor dynamic performance caused by non-minimum phase. LADRC is used to estimate and compensate the fluctuations of input voltage and loads in time. Linear state error feedback (LSEF) is used to achieve smaller errors than traditional control method, which ensures the stability and robustness of the system under internal uncertainty and external disturbance. Subsequently, the stability of the system is determined by frequency domain analysis. Finally, the feasibility and superiority of the proposed strategy is verified by simulation and hardware experiment.


2017 ◽  
Vol 40 (4) ◽  
pp. 1328-1339 ◽  
Author(s):  
Ling Zhao ◽  
Linlin Ge ◽  
Tao Wang

In this paper, position control is addressed for a two-joint robot finger system driven by pneumatic artificial muscles. It is hard to obtain high precision control for a two-joint robot finger system due to coupling and nonlinearities. A two-input and two-output decoupling problem is solved via active disturbance rejection control without complicated calculations. An extended state observer is designed to estimate the nonlinearities. Furthermore, the stability of the two-joint robot finger system is shown by a back-stepping method. Results from experiments are demonstrated to show the effectiveness of the proposed control approach.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 14
Author(s):  
Shuzhong Zhang ◽  
Angen Wu ◽  
Fuquan Dai

As a result of the energy crisis and further development of the electro-hydraulic actuator, double-pump direct driven hydraulics (DDH) was brought forward, which mainly comprises a servo motor, double fixed displacement pumps, a differential cylinder, a low-pressurized tank and auxiliary valves. To address the problems caused by uncertain parameters and unknown external disturbances of DDH, this paper proposed a control method adopting active disturbance rejection control (ADRC). Firstly, a mathematical model, including a DDH unit and a micro-crane, was created and modelled in MATLAB/Simulink. Further, the model was verified by measurement. After that, the state-space equation model of the system was derived based on its mathematical model and a third-order ADRC was designed using the constructed system state-space equation. Additionally, tracking-differentiator (TD) was employed to process the input signal transiently to avoid unnecessary oscillations, and the extended state observer (ESO) was used to accurately estimate the influence of the uncertainty and compensate by nonlinear feedback control law (NFCL). Moreover, the proposed ADRC or Proportional–Integral–Differential (PID) control was combined with the mathematical model of a micro-crane. Finally, the simulations were performed under varying loads, and the system position tracking performance were analyzed and compared. The results show that the ADRC can sufficiently suppress the unknown external disturbance, has the advantages of robustness, and improves the position tracking precision.


2017 ◽  
Vol 40 (14) ◽  
pp. 4063-4077 ◽  
Author(s):  
Sumian Song ◽  
Chong Tang ◽  
Zidong Wang ◽  
Gangfeng Yan

This paper aims to develop an active disturbance rejection controller design scheme for compass-like biped robots. In the previous study, with a special designed mechanical structure on compass-like biped, we have generated a high-efficient walking gait. The original controller applied linearization approximation based on the method transverse coordinate control, with which the ability of disturbance rejection is insufficient. We introduce the active disturbance rejection controller method into the control scheme, which only requires the information of angular momentum and has the ability to compensate the model error and the external disturbance. With the new control strategy, the linearization approximation method is replaced by an active disturbance rejection controller and the robustness is improved. In order to further apply this control method, a switching control strategy has been proposed and a series of numerical simulations show that active disturbance rejection controller has a good disturbance rejection effect.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1194-1202
Author(s):  
Jianzhong Huang ◽  
Yuwan Cen

The series manipulator of the demolition robot has different working postures and large self-weight so that the bearing mass of the joint hydraulic cylinder is a variable value, and the change of mass affects the dynamic characteristics of the valve-controlled hydraulic cylinder system. In this paper, an equivalent mass estimation method of the big-arm joint hydraulic cylinder is given, and the natural frequency range of the big-arm hydraulic cylinder-load system is calculated. In order to suppress the influence of the change of the natural frequency and external disturbance of the hydraulic cylinder on the system, the linear active disturbance rejection control is adopted in the closed-loop position control. The simulation results show that the change of load mass of the joint hydraulic cannot be ignored when designing the joint position controller of multi-joint hydraulic manipulator. And the simulation tests prove that the linear active disturbance rejection control strategy keeps good dynamic characteristic and steady-state accuracy for the change of natural frequency and external disturbance of hydraulic cylinder and has good tracking performance for periodic sinusoidal signal. Linear active disturbance rejection control is robust in the variable mass control of the manipulator and meets the requirements of the joint position control of the heavy-duty hydraulic manipulator.


2016 ◽  
Vol 04 (01) ◽  
pp. 35-40
Author(s):  
Ping Liu ◽  
Weijie Sun ◽  
Zhendong Sun

This study proposes the active disturbance rejection control (ADRC) for a second degree of freedom (2D) electrostatic torsional micromirror with sidewall electrodes. The main idea is to use the linear extended state observer (LESO) to estimate the external disturbance and the angular velocity of the micromirror, and a feedback controller is further applied to achieve the position control of the micromirror. The effectiveness of the LESO in the estimation of the external disturbance and angular velocity is demonstrated. The proposed novel control scheme provides the micromirror with high positioning accuracy and disturbance rejection.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 262
Author(s):  
Pengchong Chen ◽  
Ying Luo ◽  
Yibing Peng ◽  
Yangquan Chen

In this paper, a fractional-order active disturbance rejection controller (FOADRC), combining a fractional-order proportional derivative (FOPD) controller and an extended state observer (ESO), is proposed for a permanent magnet synchronous motor (PMSM) speed servo system. The global stable region in the parameter (Kp, Kd, μ)-space corresponding to the observer bandwidth ωo can be obtained by D-decomposition method. To achieve a satisfied tracking and anti-load disturbance performance, an optimal ADRC tuning strategy is proposed. This tuning strategy is applicable to both FOADRC and integer-order active disturbance rejection controller (IOADRC). The tuning method not only meets user-specified frequency-domain indicators but also achieves a time-domain performance index. Simulation and experimental results demonstrate that the proposed FOADRC achieves better speed tracking, and more robustness to external disturbance performances than traditional IOADRC and typical Proportional-Integral-Derivative (PID) controller. For example, the JITAE for speed tracking of the designed FOADRC are less than 52.59% and 55.36% of the JITAE of IOADRC and PID controller, respectively. Besides, the JITAE for anti-load disturbance of the designed FOADRC are less than 17.11% and 52.50% of the JITAE of IOADRC and PID controller, respectively.


Sign in / Sign up

Export Citation Format

Share Document