Physical and Numerical Investigations on Wave Run-Up and Dissipation under Breakwater with Fence Revetment

2021 ◽  
Vol 9 (12) ◽  
pp. 1355
Author(s):  
Enjin Zhao ◽  
Lin Mu ◽  
Zhaoyang Hu ◽  
Xinqiang Wang ◽  
Junkai Sun ◽  
...  

Revetment elements and protective facilities on a breakwater can effectively weaken the impact of waves. In order to resist storm surges, there is a plan to build a breakwater on the northern shore of Meizhou Bay in Putian City, China. To better design it, considering different environmental conditions, physical and numerical experiments were carried out to accurately study the effects of the breakwater and its auxiliary structures on wave propagation. In the experiments, the influence of the wave type, initial water depth, and the structure of the fence plate are considered. The wave run-up and dissipation, the wave overtopping volume, and the structure stability are analyzed. The results indicate that the breakwater can effectively resist the wave impact, reduce the wave run-up and overtopping, and protect the rear buildings. In addition, under the same still water depth and significant wave height, the amount of overtopped water under regular waves is larger than that under irregular waves. With the increase of the still water depth and significant wave height, the overtopped water increases, which means that when the storm surge occurs, damage on the breakwater under the high tide level is greater than that under the low tide level. Besides, the fence plate can effectively dissipate energy and reduce the overtopping volume by generating eddy current in the cavity. Considering the stability and the energy dissipation capacity of the fence plate, it is suggested that a gap ratio of 50% is reasonable.

Author(s):  
Qinzheng Yang ◽  
Muthu Chezhian ◽  
Geir Olav Hovde

A shallow water disconnectable STL turret mooring and riser system has been developed for water depth between 30 and 50 m. This technology is based on APL’s disconnectable STL (Submerged Turret Loading) and STP (Submerged Turret Production) technologies which had been widely applied for water depth between 70 m to 2600 m for FPSOs and LNG offshore terminals. The advantage of disconnectable system is that the mooring and riser system can be designed to a preferred sea state. When the sea state is higher than design sea state (like hurricane), the vessel can be disconnected and sail away. The shallow water STL system consists of STL buoy, mooring lines, riser system and landing pad. The interface with vessel is the same as traditional STL system. The mooring and riser system are connected to the vessel through STL buoy and can be pulled into vessel by using ship winch. Unlike traditional STP and STL buoys, the shallow STL buoy has a net weight and will stay on the landing pad when disconnected from vessel. The landing pad is designed to support the impact load from STL buoy and supply enough friction for the STL buoy to stay in position during 100-year storm. The mooring system design has taken the advantage of directionality of weather when close to the shore by using different mooring line length in different directions. Further an innovative Hold-Back-Wave riser configuration has been developed for shallow water system. The riser configuration has a larger flexibility compared to traditional wave configuration and has proved to be feasible for significant wave height at least 7 m when connected to the vessel and 10+ m when disconnected from the vessel. Model test for the disconnectable shallow water turret mooring and riser system had been performed in MARINTEK, Trondheim with a LNG re-gasification vessel model at 30 m water depth. For connected system, significant wave height Hs = 6 m and 8 m has been tested. The mooring and riser system perform well, as predicted. For disconnected system (when the buoy sitting on the landing pad), significant wave height Hs = 10 m has been tested. The STL buoy is sitting on the landing pad without significant movement and the riser system performs well. SIMO program has been used to calibrate the model test results with numerical simulations. By adjusting surge, sway, yaw damping and 2nd order wave drift force, the calibrated SIMO model agrees well with model test results and can be used for similar development.


2008 ◽  
Vol 38 (4) ◽  
pp. 817-839 ◽  
Author(s):  
Weiqing Zhang ◽  
William Perrie

Abstract A coupled atmosphere–wave–sea spray model system is used to evaluate the impact of sea spray and wave drag on storm-generated waves, their height variations, and directional wave spectra in relation to the storm location and translation speed. Results suggest that the decrease or increase of significant wave height due to spray and wave drag is most significant in high-wind regions to the right of the storm track. These processes are modulations on the maximum-wave region and tend to occur several hours after the peak wind events, depending on the storm translation velocity. The translation speed of the storm is important. The directional variation between local winds and wind-generated waves within rapidly moving storms that outrun the waves is notably different from that of trapped waves, when the dominant waves’ group velocity approximates the storm translation speed. While wave drag and spray can increase or reduce the magnitudes of wind and significant wave height, their nondirectional formulations allow them to have little apparent effect on the directional wave spectra.


2021 ◽  
Author(s):  
Lixin Xu ◽  
Xiaoqing Teng ◽  
Jinguang Wang ◽  
Sing-Kwan Lee ◽  
Jiancheng Liu ◽  
...  

Abstract Negative air gap and wave slamming load on the deck box of drilling semi-submersible units in severe storm have received a great deal of attention, due to the COSL Innovator accident in 2015. Equally important is vertical slamming load on the MODU underdeck, which is less reported in the literature. The present paper attempts to derive characteristic vertical slamming pressure on the deck bottom, based on an extensive model test program for a drilling semi-submersible unit, CM-SD1000. A total of 96 3-hour wave impact tests were conducted including 4 sea states selected along the DNV steepness criterion curve in 3 wave headings. Two critical sea states were identified and each was tested with 16 random realizations in both the head and the beam waves. 8 force panels were installed on the under-deck to capture vertical wave impact events. It is found that the peak slamming pressures obtained can be fitted well with both Weibull and Gumbel probability function. The extreme vertical impact pressure predicted are of the same order of magnitude as the extreme horizontal impact pressure. The present study also shows that rise velocities of the wave surface relative to the deck bottom have a remarkable correlation with the wave slamming pressure in terms of probability distribution. The relative rise velocities can be properly derived from wave probe measurements. This offers an alternative approach to estimate the vertical impact pressure without resort to force panels. In contrast to horizontal wave slamming, the magnitude and frequency of vertical ones simply increases with significant wave height and wave steepness has much less effect. It is found that the extreme vertical impact pressure can be approximated well by a linear function of the significant wave height. The linear relationship, if validated by more tests, may help evaluate structural strength of the deck bottom before wave basin model testing.


2015 ◽  
Vol 18 (2) ◽  
pp. 371-391 ◽  
Author(s):  
Morteza Zanganeh ◽  
Abbas Yeganeh-Bakhtiary ◽  
Takao Yamashita

In this study, the adaptive network-based fuzzy inference system (ANFIS) and artificial neural network (ANN) were employed to estimate the wind- and wave-induced coastal current velocities. The collected data at the Joeutsu-Ogata coast of the Japan Sea were used to develop the models. In the models, significant wave height, wave period, wind direction, water depth, incident wave angle, and wind speed were considered as the input variables; and longshore and cross-shore current velocities as the output variables. The comparison of the models showed that the ANN model outperforms the ANFIS model. In addition, evaluation of the models versus the multiple linear regression and multiple nonlinear regression with power functions models indicated their acceptable accuracy. A sensitivity test proved the stronger effects of wind speed and wind direction on longshore current velocities. In addition, this test showed great effects of significant wave height on cross-shore currents' velocities. It was concluded that the angle of incident wave, water depth, and significant wave period had weaker influences on the velocity of coastal currents.


2007 ◽  
Vol 24 (6) ◽  
pp. 1102-1116 ◽  
Author(s):  
J. Gómez-Enri ◽  
C. P. Gommenginger ◽  
M. A. Srokosz ◽  
P. G. Challenor ◽  
J. Benveniste

For early satellite altimeters, the retrieval of geophysical information (e.g., range, significant wave height) from altimeter ocean waveforms was performed on board the satellite, but this was restricted by computational constraints that limited how much processing could be performed. Today, ground-based retracking of averaged waveforms transmitted to the earth is less restrictive, especially with respect to assumptions about the statistics of ocean waves. In this paper, a theoretical maximum likelihood estimation (MLE) ocean waveform retracker is applied tothe Envisat Radar Altimeter system (RA-2) 18-Hz averaged waveforms under both linear (Gaussian) and nonlinear ocean wave statistics assumptions, to determine whether ocean wave skewness can be sensibly retrieved from Envisat RA-2 waveforms. Results from the MLE retracker used in nonlinear mode provide the first estimates of global ocean wave skewness based on RA-2 Envisat averaged waveforms. These results show for the first time geographically coherent skewness fields and confirm the notion that large values of skewness occur primarily in regions of large significant wave height. Results from the MLE retracker run in linear and nonlinear modes are compared with each other and with the RA-2 Level 2 Sensor Geophysical Data Records (SGDR) products to evaluate the impact of retrieving skewness on other geophysical parameters. Good agreement is obtained between the linear and nonlinear MLE results for both significant wave height and epoch (range), except in areas of high-wave-height conditions.


1982 ◽  
Vol 1 (18) ◽  
pp. 128 ◽  
Author(s):  
Katsutoshi Tanimoto ◽  
Tadahiko Yagyu ◽  
Yoshimi Goda

The stability of armor units for the rubble mound foundations of composite breakwaters has been investigated under the action of irregular waves. The tests establish that irregular waves are more destructive than regular waves, when the height of regular waves is set equal to the significant wave height. The stability number, defined by Hudson, for quarry stones and concrete blocks with simple shapes is formulated on the basis of irregular wave tests. The stability number is expressed by two parameters of h'7/7]/3 and K, where h' is the crest depth of the rubble mound foundation, #1/3 is the design significant wave height, and K is a parameter for the combined effects of the relative water depth and the relative berm width of the rubble mound foundation to the wavelength. The design mass of armor units can be calculated by the stability equation with the stability number. The application of the proposed method to the results of the irregular wave tests demonstrates that the damage percent for the quarry stones is at most 3.5% at the design condition and the damage progresses rather gradually for the action of higher waves. On the other hand, the damage of the concrete blocks almost jumps beyond the design wave height. In particular, the drastic damage is often caused in the case of high rubble mound foundations. The proposed method is confirmed, however, to be applicable for the ordinary low mound foundations with a sufficient safety.


2006 ◽  
Vol 23 (3) ◽  
pp. 448-463 ◽  
Author(s):  
Lotfi Aouf ◽  
Jean-Michel Lefèvre ◽  
Danièle Hauser

Abstract Within the framework of the Surface Waves Investigation and Monitoring from Satellite mission (SWIMSAT) proposed to the European Space Agency, an assimilation scheme has been implemented in the Wave Model (WAM) in order to estimate the impact of spectral information on wave prediction. The scheme uses an optimal interpolation and the “spectral partitioning” principle. The synthetic wave spectra are located along a SWIMSAT orbit track and are assimilated in a 4-day-period simulation. Random errors are included to simulate the uncertainties of SWIMSAT instrumentation. The sensitivity of the scheme to background and observational errors and the correlation length is examined. The assimilation impact is investigated for two cases of moderate and large errors of the first guess. The results show that the assimilation scheme works correctly and the rms errors of significant wave height, mean period, and direction are significantly reduced for both periods of analysis and forecast. The impact on significant wave height is noticeable during the period of analysis and stays efficient for 2-day forecasts. For a large error in the first guess, the impact increases and remains significant for 3-day forecasts. Statistical analysis of mean wave parameters clearly shows that the use of spectral information yields a better estimate of wave frequency, direction, and low-frequency wave height in comparison with the results based upon assimilation of wave heights only. However, total significant wave height is less sensitive to the addition of spectral information in the assimilation scheme. The use of correlation length depending on the latitude of grid points leads to a better spread of incremental observations and, hence, to better skills in terms of the rms errors of mean wave parameters. The use of several wavelength cutoffs concerning the SWIMSAT synthetic wave spectra suggests that the “assimilation index” of mean wave parameters decreases with the increasing wavelength cutoff.


Author(s):  
Dag Myrhaug ◽  
Se´bastien Fouques

The paper provides a bivariate distribution of significant wave height and characteristic wave steepness, as well as a bivariate distribution of significant wave height and characteristic surf parameter. The characteristic wave steepness in deep water is defined in terms of the significant wave height and the spectral peak period, and is relevant for e.g. the design of ships and marine structures. The characteristic surf parameter is given by the ratio between the slope of a beach or a structure and the square root of the characteristic wave steepness in deep water. The characteristic surf parameter is used to characterize surf zone processes and is relevant for e.g. wave run-up on beaches and coastal structures. The paper presents statistical properties of the wave parameters as well as examples of results typical for field conditions.


2010 ◽  
Vol 40 (6) ◽  
pp. 1373-1389 ◽  
Author(s):  
Valdir Innocentini ◽  
Iury Angelo Gonçalves

Abstract The influence of ocean gravity waves on the wind and temperature above the surface is investigated using a one-dimensional boundary layer model. The effect of the wave-induced stress is evaluated using three parameterizations: wave age (WaAg), wave steepness (WaSt), and wind action on the wave spectrum (WiAc). It is found that while the WaAg is more effective in reducing the wind for young waves, in the WaSt approach the maximum reduction is for old waves. On the other hand, the WiAc is very sensitive to the energy present in high frequencies corresponding to periods less than 2 s, which are found in both young and mature spectra. Since observations show that most of the wave stress is due to the small-period wave energy, in this aspect the WaSt parameterization is not recommended; WaAg is not as accurate; and thus WiAc is the best among the three, although its computational cost is the highest. The droplet load contribution to the total surface stress can be neglected for the droplet spectrum produced by 10-m wind speeds up to 15 m s−1, but its importance increases with the speed and its magnitude becomes about ⅕ of the total stress for wind speed ∼30 m s−1. Concerning the latent and sensible heat fluxes accompanying the production of spume droplets by waves, a feasible microphysical formulation for operational use in weather forecasting models is proposed. The droplet spectrum is assumed to be a product of two functions, one depending on the windsea Reynolds number and the other on the droplet radius spectrum. The bulk effect of the latter is analytically evaluated and stored in a table as a function of air temperature Ta, relative humidity R%, and significant wave height Hs. In numerical experiments with initial sea surface temperature 5 K higher than the air surface, latent and sensible heat contributions to the air temperature are computed as a function of the wave spectra. The launched droplet spectrum (which increases the air temperature due to sensible heat) and the relative humidity (which controls the cooling due to the droplet evaporation) define the heat budget and the air temperature evolution. Although in these experiments the sea temperature is much higher than the air temperature, the results show a noticeable dominance of the evaporative cooling in the lower atmosphere mainly for smaller significant wave height. Some air warming is noticeable only from a threshold around Hs ≥ 5 m.


Sign in / Sign up

Export Citation Format

Share Document