scholarly journals Cavitation of Multiscale Vortices in Circular Cylinder Wake at Re = 9500

2021 ◽  
Vol 9 (12) ◽  
pp. 1366
Author(s):  
Fadong Gu ◽  
Yadong Huang ◽  
Desheng Zhang

Cavitation characteristics in the wake of a circular cylinder, which contains multiscale vortices, are numerically investigated via Large Eddy Simulation (LES) in this paper. The Reynolds number is 9500 based on the inlet velocity, the cylinder diameter and the kinematic viscosity of the noncavitation liquid. The Schneer–Sauer (SS) model is applied to cavitation simulation because it is more sensitive to vapor–liquid two-phase volume fraction than the Zwart–Gerber–Belamri (ZGB) model, according to theoretical analyses. The wake is quasiperiodic, with an approximate frequency of 0.2. It is found that the cavitation of vortices could inhibit the vortex shedding. Besides, the mutual aggregation of small-scale vortices in the vortex system or the continuous stripping of small-scale vortices at the edge of large-scale vortices could induce the merging or splitting of cavities in the wake.

Author(s):  
Tetsuro Tamura ◽  
Yoshiyuki Ono ◽  
Kohji Hashida

Recent advancement of LES (Large Eddy Simulation) technique for turbulent wake has made it possible to numerically investigate the turbulence effects on aerodynamic characteristics of a bluff body. Here we carry out LES of wake flows past a circular cylinder in the subcritical Reynolds number regime. For inflow boundary condition, homogeneous turbulence generated statistically is given time-sequentially. We bring into focus the interaction between the oncoming turbulence and the shear layer separated from a circular cylinder. Shear layer instability easily occurs under such a stimulation and details of its behavior are visualized. Turbulence effects on unsteady flows in the cylinder wake are discussed. The resulting aerodynamic characteristics and their physical mechanism are clarified.


Author(s):  
Sreebash C. Paul ◽  
Manosh C. Paul ◽  
William P. Jones

Formation of nitric oxide (NO) in a model cylindrical combustor is investigated by applying Large Eddy Simulation (LES) technique. Gaseous propane (C3H8) is injected through a circular nozzle attached at the centre of the combustor inlet and preheated air with temperature of 773K is supplied through the annulus surrounding of the nozzle. The non-premixed combustion process is modelled via conserved scalar approach with laminar flamelet model, while in NO formation model, the extended Zeldovich (thermal) reaction mechanism is taken into account through a transport equation for NO mass fraction. In LES the governing equations are filtered using a spatial filtering approach to separate the flow field into large scale eddies and small scale eddies. The large scale eddies are resolved explicitly while the small scale eddies are modelled via Smagorinsky model.


2014 ◽  
Vol 1008-1009 ◽  
pp. 979-982
Author(s):  
Xiao Bing Wang

The effect of the turbine installation position on two-phase flow of a single six-blade ruston turbine in stirred tank with different agitation speeds is numerically simulated by using the large eddy simulation combined with mixture model. The result shows that when stirring low-density mixture, with the increasing stirring axle speed, volume fraction of low-density granules near the paddle is higher, while that near the barrel is low. When the paddle is installed with close distance to the tank bottom, the upper low-density granules are transported to the tank bottom to form good stirring effect. With increasing of the paddle location, distribution of low-density granules is hardly found at the bottom of stirred tank.


2012 ◽  
Vol 703 ◽  
pp. 1-28 ◽  
Author(s):  
Shiyi Chen ◽  
Zhenhua Xia ◽  
Suyang Pei ◽  
Jianchun Wang ◽  
Yantao Yang ◽  
...  

AbstractIn the traditional hybrid RANS/LES approaches for the simulation of wall-bounded fluid turbulence, such as detached-eddy simulation (DES), the whole flow domain is divided into an inner layer and an outer layer. Typically the Reynolds-averaged Navier–Stokes (RANS) equations are used for the inner layer, while large-eddy simulation (LES) is used for the outer layer. The transition from the inner-layer solution to the outer-layer solution is often problematic due to the lack of small-scale dynamics in the RANS region. In this paper, we propose to simulate the whole flow domain by large-eddy simulation while enforcing a Reynolds-stress constraint on the subgrid-scale (SGS) stress model in the inner layer. Both the algebraic eddy-viscosity model and the one-equation Spalart–Allmaras (SA) model have been used to constrain the Reynolds stress in the inner layer. In this way, we improve the LES methodology by allowing the mean flow of the inner layer to satisfy the RANS solution while small-scale dynamics is included. We validate the Reynolds-stress-constrained large-eddy simulation (RSC-LES) model by simulating three-dimensional turbulent channel flow and flow past a circular cylinder. Our model is able to predict mean velocity, turbulent stress and skin-friction coefficients more accurately in turbulent channel flow and to estimate the pressure coefficient after separation more precisely in flow past a circular cylinder compared with the pure dynamic Smagorinsky model (DSM) and DES using the same grid resolution. Furthermore, the computational cost of the RSC-LES is almost the same as that of DES.


Author(s):  
A. RINOSHIKA ◽  
Y. ZHENG ◽  
E. SHISHIDO

The three-dimensional orthogonal wavelet multi-resolution technique was applied to analyze flow structures of various scales around an externally mounted vehicle mirror. Firstly, the three-dimensional flow of mirror wake was numerically analyzed at a Reynolds number of 105 by using the large-eddy simulation (LES). Then the instantaneous velocity and vorticity were decomposed into the large-, intermediate- and relatively small-scale components by the wavelet multi-resolution technique. It was found that a three-dimensional large-scale vertical vortex dominates the mirror wake flow and makes a main contribution to vorticity concentration. Some intermediate- and relatively small-scale vortices were extracted from the LES and were clearly identifiable.


Author(s):  
Mohammad Khalid Hossen ◽  
Asokan Mulayath Variyath ◽  
Jahrul M Alam

In large eddy simulation (LES) of turbulent flows, the most critical dynamical processes to be considered by dynamic subgrid models to account for an average cascade of kinetic energy from the largest to the smallest scales of the flow is not fully clear. Furthermore, evidence of vortex stretching being the primary mechanism of the cascade is not out of the question. In this article, we study some essential statistical characteristics of vortex stretching and its role in dynamic approaches of modeling subgrid-scale turbulence. We have compared the interaction of subgrid stresses with the filtered quantities among four models using invariants of the velocity gradient tensor. This technique is a single unified approach to studying a wide range of length scales in the turbulent flow. In addition, it also provides a rational basis for the statistical characteristics a subgrid model must serve in physical space to ensure an appropriate cascade of kinetic energy. Results indicate that the stretching mechanism extracts energy from the large-scale straining motion and passes it onto small-scale stretched vortices.


2010 ◽  
Vol 661 ◽  
pp. 341-364 ◽  
Author(s):  
D. CHUNG ◽  
B. J. McKEON

We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Reτ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity.


1992 ◽  
Vol 238 ◽  
pp. 325-336 ◽  
Author(s):  
M. Germano

Explicit or implicit filtered representations of chaotic fields like spectral cut-offs or numerical discretizations are commonly used in the study of turbulence and particularly in the so-called large-eddy simulations. Peculiar to these representations is that they are produced by different filtering operators at different levels of resolution, and they can be hierarchically organized in terms of a characteristic parameter like a grid length or a spectral truncation mode. Unfortunately, in the case of a general implicit or explicit filtering operator the Reynolds rules of the mean are no longer valid, and the classical analysis of the turbulence in terms of mean values and fluctuations is not so simple.In this paper a new operatorial approach to the study of turbulence based on the general algebraic properties of the filtered representations of a turbulence field at different levels is presented. The main results of this analysis are the averaging invariance of the filtered Navier—Stokes equations in terms of the generalized central moments, and an algebraic identity that relates the turbulent stresses at different levels. The statistical approach uses the idea of a decomposition in mean values and fluctuations, and the original turbulent field is seen as the sum of different contributions. On the other hand this operatorial approach is based on the comparison of different representations of the turbulent field at different levels, and, in the opinion of the author, it is particularly fitted to study the similarity between the turbulence at different filtering levels. The best field of application of this approach is the numerical large-eddy simulation of turbulent flows where the large scale of the turbulent field is captured and the residual small scale is modelled. It is natural to define and to extract from the resolved field the resolved turbulence and to use the information that it contains to adapt the subgrid model to the real turbulent field. Following these ideas the application of this approach to the large-eddy simulation of the turbulent flow has been produced (Germano et al. 1991). It consists in a dynamic subgrid-scale eddy viscosity model that samples the resolved scale and uses this information to adjust locally the Smagorinsky constant to the local turbulence.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 375
Author(s):  
Mohammad Khalid Hossen ◽  
Asokan Mulayath Variyath ◽  
Jahrul M. Alam

In large eddy simulation (LES) of turbulent flows, dynamic subgrid models would account for an average cascade of kinetic energy from the largest to the smallest scales of the flow. Yet, it is unclear which of the most critical dynamical processes can ensure the criterion mentioned above. Furthermore, evidence of vortex stretching being the primary mechanism of the cascade is not out of the question. In this article, we study essential statistical characteristics of vortex stretching. Our numerical results demonstrate that vortex stretching rate provides the energy dissipation rate necessary for modeling subgrid-scale turbulence. We have compared the interaction of subgrid stresses with the filtered quantities among four models using invariants of the velocity gradient tensor. The individual and the joint probability of vortex stretching and strain amplification show that vortex stretching rate is highly correlated with the energy cascade rate. Sheet-like flow structures are correlated with viscous dissipation, and vortex tubes are more stretched than compressed. The overall results indicate that the stretching mechanism extracts energy from the large-scale straining motion and passes it onto small-scale stretched vortices.


2016 ◽  
Vol 18 (3) ◽  
pp. 195-211 ◽  
Author(s):  
Felix Örley ◽  
Stefan Hickel ◽  
Steffen J Schmidt ◽  
Nikolaus A Adams

We investigate the turbulent multiphase flow inside a nine-hole common rail Diesel injector during a full injection cycle of ISO 4113 diesel fuel into air by implicit large-eddy simulation (LES). The simulation includes a prescribed needle movement obtained from a one-dimensional multi-domain simulation. The injector geometry is represented by a conservative cut-element-based immersed boundary method with subcell resolution, which has been developed for the application in the context of cavitating liquid flows. We employ a barotropic two-phase two-fluid model, where all components (i.e. air, liquid diesel, gaseous diesel) are represented by a homogenous mixture approach. The cavitation model is based on a thermodynamic equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The analysis of the turbulent flow field reveals that the opening and closing phase are dominated by small-scale turbulence, while in the main injection phase large vortical structures are formed in the needle volume and reach into the nozzle holes. Violent collapse events of cavitation structures are detected during the closing phase in the nozzle holes and after closing in the sac hole region. A comparison with LES results with a fixed injector needle at different lift positions shows a good agreement for large needle lifts, while the needle movement has significant effects on important flow features at low needle lifts.


Sign in / Sign up

Export Citation Format

Share Document