scholarly journals Influence of Various Stator Parameters on the Open-Water Performance of Pump-Jet Propulsion

2021 ◽  
Vol 9 (12) ◽  
pp. 1396
Author(s):  
Fuzheng Li ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Denghui Qin ◽  
Han Li

In order to improve the hydrodynamic performance of pump-jet propulsion (PJP) when matching stator with the rotor, the RANS method with SST k-ω turbulence model is employed to study the influence of six kinds of stator parameters, which are classified into three groups, i.e., stator solidity, stator angles and rotor–stator spacing (S). Results show that the stator solidity involves the blade number (Ns) and chord length (L), has an obvious acceleration effect at and after stator, and produces a higher thrust and torque with a slight efficiency change. Further comparing Ns and L results, we find greater distinctions between the two cases when stator solidity is greatly adjusted. Three stator angles, i.e., stagger angle (α), lean angle (γ), and sweep angle (β), are studied. The α has the biggest effect on the thrust, torque, and efficiency; meanwhile, it shifts the advance number that corresponds to maximum efficiency. The effect of γ is similar to α, but its influence is far less than α. However, there is little difference between various β cases except for off-design conditions, where the efficiency drops dramatically as β increases. The S has a slight effect on PJP performance. Even though S decreases 34% relative to the original PJP, the rotor thrust and torque increase by less than 1%. In addition, we compare torque balance locations under various parameters, and each component force is analyzed in detail to explain the reason for performance variation. The present work is conducive to future optimization in PJP design.

2010 ◽  
Vol 143-144 ◽  
pp. 1143-1147
Author(s):  
Bing Xiao ◽  
Xiao Wang ◽  
Ai Guo Shi ◽  
Ming Wu

In order to obtain the four quadrants hydrodynamic performance of open water propeller by means of CFD, a mathematic model of three dimensional coordinates points was established and programmed using Matlab based on the basic parameters of propeller. A smooth model propeller was made by importing these points into front end software. Then taking AU model for example, numerical simulations of propeller turning ahead while going ahead, turning ahead while going astern, turning astern while going ahead and turning astern while going astern were carried out. At the same time, the thrust and torque coefficients were presented. The simulation results showed good agreement with the results of tank test. The influence of mesh generation and computational domain on open-water performance were also discussed.


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


Author(s):  
Hasan Sajedi ◽  
Miralam Mahdi

Marine propeller always operates in the wake of a vehicle (ship, torpedo, submarine) but (due to the high computational cost of simulating vehicle and propeller simultaneously) to investigate the propeller geometric parameters, simulations are usually performed in open-water conditions. In this article, using the computational fluid dynamics method with the control volume approach, the effect of the rake angle on the propeller performance and formation of cavitation in the uniform flow (open water) and the nonuniform flow (wake flow) was investigated. In the nonuniform condition, the array of plates was used to simulate wake at upstream propeller. For uniform flow, steady solution scheme was adopted and for nonuniform flow unsteady solution scheme was adopted, and a moving mesh zone was generated around the propeller. To simulate cavitation a multiphase mixture flow, the Reynolds-averaged Navier–Stokes method was used and modeled by Schnerr Sauer's cavitation model. First, the E779a propeller model for numerical validation in the uniform flow and nonuniform flow was investigated. Numerical results were compared with the experimental result, and there was a good agreement between volume of the cavity, thrust, and torque coefficients. To study the effect of rake angle on the performance of B-series propellers, four models with different rake angles were modeled, and simulation was investigated behind the wake. The results of thrust, torque coefficients, and cavitation volume according to the flow parameters and cavitation number were presented as graphs. The results reveals that in the uniform flow, the rake angle has no significant effect on the propeller performance, but behind the wake flow, increase of rake causes to reduce the force applied to the propeller blades, cavitation volume, and pressure fluctuations on the propeller.


2019 ◽  
Vol 20 (6) ◽  
pp. 617
Author(s):  
Mohammad Bakhtiari ◽  
Hassan Ghassemi

Marine cycloidal propeller (MCP) is a special type of marine propulsors that provides high maneuverability for marine vessels. In a MCP, the propeller axis of rotation is perpendicular to the direction of thrust force. It consists of a number of lifting blade. Each blade rotates about the propeller axis and simultaneously pitches about its own axis. The magnitude and direction of thrust force can be adjusted by controlling the propeller pitch. Voith-Schneider propeller (VSP) is a low-pitch MCP with pure cycloidal blade motion allowing fast, accurate, and stepless control of thrust magnitude and direction. Generally, low-pitch cycloidal propellers are used in applications with low speed maneuvering requirements, such as tugboats, minesweepers, etc. In this study, a 2.5D numerical method based on unsteady RANS equations with SST k-ω turbulent model was implemented to predict the open water hydrodynamic performance of a VSP for different propeller pitches and blade thicknesses. The numerical method was validated against the experimental data before applying to VSP. The results showed that maximum open water efficiency of a VSP is enhanced by increasing the propeller pitch. Furthermore, the effect of blade thickness on open water efficiency is different at various advance coefficients, so that the maximum efficiency produced by the VSP decreases with increasing blade thickness at different propeller pitches.


2013 ◽  
Vol 437 ◽  
pp. 32-35
Author(s):  
Li Jian Ou ◽  
Nan Huo Wu ◽  
De Yu Li

Firstly, the calculated model was created in UG and GAMBIT, and then the Moving Mesh method was adopted to simulate thrust and torque of ducted propeller using FLUENT in the open water. The thrust, torque and bearing force of ducted propeller in three different wake fields were calculated. And the influence on the performance of ducted propeller by the wake fields was analyzed.


2019 ◽  
Vol 16 (1) ◽  
pp. 1-20
Author(s):  
Mohammed Islam ◽  
Fatima Jahra

This research proposes mesh and domain optimization strategies for a popular Computational Fluid Dynamics (CFD) technique to estimate the open water propulsive characteristics of fixed pitch propellers accurately and time-efficiently based on examining the effect of various mesh and computation domain parameters. It used a Reynolds-Averaged Navier-Stokes (RANS) solver to predict the propulsive performance of a fixed pitch propeller with varied meshing, simulation domain and setup parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations in a limited memory and in a timely manner without compromising the accuracy of results. The predicted thrust and torque for the propeller were compared to the corresponding measurements for determining the prediction accuracy. The authors found that the optimized meshing and setup arrangements reduced the propeller opens simulation time by at least a factor of six as compared to the generally popular CFD parameter setup. In addition, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion etc. to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using a commercial CFD package; however, the findings can be applied to any RANS solver.


2013 ◽  
Vol 694-697 ◽  
pp. 673-677 ◽  
Author(s):  
Da Zheng Wang ◽  
Dan Wang ◽  
Lei Mei ◽  
Wei Chao Shi

In this paper, the open water performance of a pod propeller in the viscous flow fields is numerically simulated by the Computational Fluid Dynamics (CFD) method. Based on the coordinate transformation formula for transforming the local to the global coordinate, mathematical model of a propeller is created. Thrust and torque coefficients corresponding to different advance coefficients of the model are calculated by ANSYS-CFX with three different turbulence models. The pressure distributions on the blade surface are also presented. Comparisons show that experimental results and numerical results agree well, with SST k-ω and RNG k-ε more accurate than the standard k-ε.


Author(s):  
Negin Donyavizadeh ◽  
Parviz Ghadimi

Linear Jet system which has a stator in addition to a rotor combines the best elements of two existing technologies of conventional screw propellers and water jets. In designing this propulsion system, tip clearance plays an essential role, since it causes the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon. Due to lack of any study in this regard, it is thus necessary to study tip clearance to find the appropriate geometry for linear jet propulsion system. In the current paper, hydrodynamic performance of linear jet propulsion system is numerically investigated. Accordingly, Ansys-CFX software is utilized and RANS unsteady equations are solved using SST turbulent model. Results of the proposed numerical model, in the form of thrust and torque coefficient as well as efficiency, are compared with available experimental data for a ducted propeller. It is concluded that most of the errors at various advance ratios for thrust and torque coefficients are less than 3% and relatively good agreement is observed. Hydrodynamic investigation involves five different sizes of tip clearance (2.5 to 10% of the rotor diameter). Simulation results indicate that thrust and torque coefficients decreases about 10% and 8% respectively, at the same advance coefficient (J) with an increase in tip clearance. Effects of tip clearance on tip-separation vortex and tip leakage vortex are also examined. At about 20% of chord length from the leading edge, separation occurs. As tip clearance size increases, the tip-leakage vortex also increases. At different advance ratios and higher tip clearance, an increase in vortex and a sudden decrease in thrust is generated by the propeller. By changing the time about 0.8 of the rotor periods, the evolution of the vortex generation behind the rotor at the tip of the blade is clearly observed.


2016 ◽  
Author(s):  
Lang Gu ◽  
Chao Wang ◽  
Jian Hu

Cartesian grid was used in open water performance prediction, cavitation performance prediction and flow field characteristics of a propeller to research the applicability of the Cartesian grid in the numerical simulations of marine propellers. The comparisons of calculated results with the previous research and experimental results verify the accuracy of calculations with the grid on the prediction of thrust and torque coefficient and the simulation of cavitation distribution, wake velocity distribution and the vortex structure trajectory. Meanwhile the propulsive performances of Cartesian grid are better than other types of grid with the similar number of nodes. And the turning point of crash performance under cavitation condition and the phenomenon of vortex merging with neighboring vortex structure are excellent agreement with experiments and references.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Negin Donyavizadeh ◽  
Parviz Ghadimi

The linear jet propulsion system, unlike pump-jets which are widely used in underwater bodies, is installed inside a tunnel under the vessel and can be used for high-speed crafts, tugs, and service boats. However, this system has not received adequate attention by researchers, which is the subject of the current study. In the present paper, hydrodynamic performance of the linear jet propulsion system is numerically investigated. Accordingly, the Ansys-CFX software is utilized and RANS equations are solved using the SST turbulent model. The results of the proposed numerical model, in the form of thrust and torque coefficient as well as efficiency, are compared with available experimental data for a ducted propeller, and good compliance is achieved. Considering the importance of stator cross section on the performance of the linear jet propulsion system, the influence of thickness and camber size of the stator on linear jet propulsion systems are examined. Based on the numerical findings, it is determined that at constant advance ratio, with increasing thickness of stator, the efficiency increases. It is also observed that as the span length increases, the maximum and minimum of the pressure coefficient increase for different thicknesses. Furthermore, it is seen that positive and negative pressure coefficients decrease with an increase in foil thickness.


Sign in / Sign up

Export Citation Format

Share Document