scholarly journals Molecular Tools for Detection and Identification of Paracoccidioides Species: Current Status and Future Perspectives

2020 ◽  
Vol 6 (4) ◽  
pp. 293 ◽  
Author(s):  
Breno Gonçalves Pinheiro ◽  
Rosane Christine Hahn ◽  
Zoilo Pires de Camargo ◽  
Anderson Messias Rodrigues

Paracoccidioidomycosis (PCM) is a mycotic disease caused by the Paracoccidioides species, a group of thermally dimorphic fungi that grow in mycelial form at 25 °C and as budding yeasts when cultured at 37 °C or when parasitizing the host tissues. PCM occurs in a large area of Latin America, and the most critical regions of endemicity are in Brazil, Colombia, and Venezuela. The clinical diagnosis of PCM needs to be confirmed through laboratory tests. Although classical laboratory techniques provide valuable information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratory practice. Recently, taxonomic changes driven by whole-genomic sequencing of Paracoccidioides have highlighted the need to recognize species boundaries, which could better ascertain Paracoccidioides taxonomy. In this scenario, classical laboratory techniques do not have significant discriminatory power over cryptic agents. On the other hand, several PCR-based methods can detect polymorphisms in Paracoccidioides DNA and thus support species identification. This review is focused on the recent achievements in molecular diagnostics of paracoccidioidomycosis, including the main advantages and pitfalls related to each technique. We discuss these breakthroughs in light of taxonomic changes in the Paracoccidioides genus.

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3456 ◽  
Author(s):  
Lorenzo Pilla ◽  
Andrea Alberti ◽  
Pierluigi Di Mauro ◽  
Maria Gemelli ◽  
Viola Cogliati ◽  
...  

Advances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients’ overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale. The need for robust biomarkers to predict patients’ responsiveness to defined therapies and for their stratification is still unmet. Progress in immunological assays and genomic techniques as long as improvement in designing and performing studies monitoring the expression of these markers along with the evolution of the disease allowed to identify candidate biomarkers. However, none of them achieved a definitive role in predicting patients’ clinical outcomes. Along this line, the cross-talk of melanoma cells with tumor microenvironment plays an important role in the evolution of the disease and needs to be considered in light of the role of predictive biomarkers. The overview of the relationship between the molecular basis of melanoma and targeted therapies is provided in this review, highlighting the benefit for clinical responses and the limitations. Moreover, the role of different candidate biomarkers is described together with the technical approaches for their identification. The provided evidence shows that progress has been achieved in understanding the molecular basis of melanoma and in designing advanced therapeutic strategies. Nevertheless, the molecular determinants of melanoma and their role as biomarkers predicting patients’ responsiveness to therapies warrant further investigation with the vision of developing more effective precision medicine.


Author(s):  
Relber Aguiar Gonçales ◽  
Rafael Ricci-Azevedo ◽  
Vanessa C S Vieira ◽  
Fabrício F Fernandes ◽  
Sandra M de O Thomaz ◽  
...  

Abstract Background The thermo-dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis. Although poorly studied, paracoccin (PCN) from P. brasiliensis has been shown to harbor lectinic, enzymatic, and immunomodulatory properties that impact disease development. Methods Mutants of P. brasiliensis overexpressing PCN (ov-PCN) were constructed by Agrobacterium tumefaciens-mediated transformation. Ov-PCN strains were analyzed and inoculated intranasally or intravenously to mice. Fungal burden, lung pathology, and survival were monitored to evaluate virulence. Electron microscopy was used to evaluate the size of chito-oligomer particles released by ov-PCN or wild-type strains to growth media. Results ov-PCN strains revealed no differences in cell growth and viability, although PCN overexpression favored cell separation, chitin processing that results in the release of smaller chito-oligomer particles, and enhanced virulence. Our data show that PCN triggers a critical effect in the cell wall biogenesis through the chitinase activity resulting from overexpression of PCN. As such, PCN overexpression aggravates the disease caused by P. brasiliensis. Conclusions Our data is consistent with a model in which PCN modulates the cell wall architecture via its chitinase activity. These findings highlight the potential for exploiting PCN function in future therapeutic approaches.


Botany ◽  
2014 ◽  
Vol 92 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Maarja Öpik ◽  
John Davison ◽  
Mari Moora ◽  
Martin Zobel

An increasing number of case studies are reporting Glomeromycota molecular diversity from ecosystems worldwide. Typically, phylogroups that can be related to morphospecies and those that remain unidentified (“environmental”) are recorded. To compare such data and generalise observed patterns, the principles underlying sequence identification should be unified. Data from case studies are collected and systematized in a public database MaarjAM ( http://www.maarjam.botany.ut.ee ), which applies a unique molecular operational taxonomic unit (MOTU) nomenclature: virtual taxa (VT) are phylogenetically defined sequence groups roughly corresponding to species-level taxa. VT are based on type sequences, making them consistent in time, but they also evolve: they can be split or merged, when necessary. This system allows standardisation of original MOTU designations and, much like binomial taxonomic nomenclature, comparison and consistency between studies. Refinement of VT delimitation principles and comparability with traditional Glomeromycota taxonomy will benefit from more information about intra- vs. inter-specific nucleotide variation in Glomeromycota, sequencing of morphospecies, and resolution of issues in Glomeromycota taxonomy. As the recorded number of VT already exceeds the number of Glomeromycota morphospecies, designation of species based on DNA alone appears a necessity in the near future. Application of VT is becoming widespread, and MaarjAM database is increasingly used as a reference for environmental sequence identification. The current status and future prospects of arbuscular mycorrhizal fungi (AMF) DNA-based identification and community description are presented.


2009 ◽  
Vol 5 (H15) ◽  
pp. 780-780
Author(s):  
F. Schuller ◽  
K. M. Menten ◽  
F. Wyrowski ◽  
H. Beuther ◽  
S. Bontemps ◽  
...  

AbstractSubmillimeter continuum emission traces high molecular column densities and, thus, dense cloud regions in which new stars are forming. Surveys of the Galactic plane in such emission have the potential of delivering an unbiased view of high-mass star formation throughout the Milky Way. Here we present the scope, current status and first results of ATLASGAL, an ongoing survey of the Galactic plane using the Large APEX Bolometer Camera (LABOCA) on the Atacama Pathfinder Experiment (APEX) telescope at the Chajnantor plateau in Chile. Aimed at mapping 360 square degrees at 870 μm, with a uniform sensitivity of 50 mJy/beam, this survey will provide the first unbiased sample of cold dusty clumps in the Galaxy at submillimeter wavelengths. These will be targets for molecular line follow-up observations and high resolution studies with ALMA and the EVLA.


1989 ◽  
Vol 161 ◽  
Author(s):  
S. Sen ◽  
S.M. Johnson ◽  
J.A. Kiele ◽  
W.H. Konkel ◽  
J.E. Stannard

ABSTRACTSingle crystals of CdTe or dilute alloys of Cd1−yZnyTe (y ≤ 0.04) and CdTe1−zSez (z ≤ 0.04) with low defect density and large single-crystal area (>30 cm2) are required as substrates for high-quality epitaxial Hg1−xCdxTe thin films in the infrared (IR) detector industry. Bridgman or gradient freeze has been the most common current technique used for growing these materials. This paper reviews the current status and the evolution at SBRC of one variation of the Bridgman technique, viz., vertical-modified Bridgman (VMB), for producing large-area substrates with excellent uniformity and reproducibility. CdTe, Cd1−yZnyTe (y ≤ 0.04) and CdTe1−zSez (z ≤ 0.04) boules of 5-to 7.5-cm diameter have been grown unseeded in the present version of the VMB growth system. In general, under optimum growth conditions, the boules have the smallest grain structure (several grains) at the tip end with enhancement of grain selection as the cylindrical body of the boule is approached, resulting in one predominant and large grain occupying 70 to 80 percent of the entire boule volume; {111}-oriented Cd1−yZnyTe and CdTe1−zSez substrates with single-crystal areas as large as 50 to 60 cm2 have been obtained from these boules. Crystal quality characterized by x-ray rocking curve, IR transmission (2.5 to 20 µm), low-temperature photoluminescence, and Hall-effect measurements as a function of temperature, showed a strong correlation with the starting material quality (especially that of elemental Te and Se). Analyses of the thermal history during growth reveals that the presence of the ampoule (with charge) increases the temperature inside the furnace by 10 to 15 degrees. The temperature gradient at the tip was measured to be 8 to 10°C/cm and it dropped to 4 to 5°C/cm beyond 2.5 cm from the tip - where rapid enhancement of grain selection takes place in most boules. The effect of this temperature rise on the initial crystallization near the tip of a boule can be explained from the numerical thermal model that was developed for the growth process with radiative and conductive heat transfer included and using a temperature profile similar to that existing in the actual growth furnace. Conditions for maximizing the fraction solidifying with a slightly convex interface, hence maximizing the single-crystal yield are discussed.


2006 ◽  
Vol 35 (6) ◽  
pp. 1275-1282 ◽  
Author(s):  
C. D. Maxey ◽  
J. C. Fitzmaurice ◽  
H. W. Lau ◽  
L. G. Hipwood ◽  
C. S. Shaw ◽  
...  

2011 ◽  
Vol 25 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Mark H.J. Sturme ◽  
Rosana Puccia ◽  
Gustavo H. Goldman ◽  
Fernando Rodrigues

Author(s):  
Bijina J. Mathew1 ◽  
Ashish Kumar Vyas ◽  
Prashant Khare ◽  
Sudheer Gupta ◽  
Ram Kumar Nema ◽  
...  

The magnitude and pace of global affliction caused by Coronavirus Disease-19 (COVID-19) is unprecedented in the recent past. From starting in a busy seafood market in the Chinese city of Wuhan, the virus has spread across the globe in less than a year, infecting over 76 million people and causing death of close to 1.7 million individuals worldwide. As no specific antiviral treatment is currently available, the major strategy in containing the pandemic is focused on early diagnosis and prompt isolation of the infected individuals. Several diagnostic modalities have emerged within a relatively short period, which can be broadly classified into molecular and immunological assays. While the former category is centered around real-time PCR, which is currently considered the gold standard of diagnosis, the latter aims to detect viral antigens or antibodies specific to the viral antigens and is yet to be recommended as a stand-alone diagnostic tool. This review aims to provide an update on the different diagnostic modalities that are currently being used in diagnostic laboratories across the world as well as the upcoming methods and challenges associated with each of them. In a rapidly evolving diagnostic landscape with several testing platforms going through various phases of development and/or regulatory clearance, it is prudent that the clinical community familiarizes itself with the nuances of different testing modalities currently being employed for this condition.


Author(s):  
T. MORIYAMA ◽  
H. TAMEISHI ◽  
J. SUWA ◽  
S. KANNO ◽  
Y. SUGIMORI

Current status and trends ov vessel detection, identification technology development and application in major countries were surveyed. According to increasing the number of foreign poaching and suspicious vessels intrusion into EEZ, patroliling by vessel and airplane does not satisfy the needs because of narrow coverege and observation frequncey. The satellite monitoring by SAR and optical sensor has been studied and partially used, but there are several disavantages such as observation frequncy, geometric occuracy and weather dependence to adopt for operational use. This paper describes an optimize system for vessel detection and identification by combining patrolling vessel, airplane and satellite. Keyword: vessel identification by satellite image, IKONOS visible image, JERS-1, Synthetic Apature Reader


Sign in / Sign up

Export Citation Format

Share Document