scholarly journals Laboratory diagnosis of COVID-19: current status and challenges

Author(s):  
Bijina J. Mathew1 ◽  
Ashish Kumar Vyas ◽  
Prashant Khare ◽  
Sudheer Gupta ◽  
Ram Kumar Nema ◽  
...  

The magnitude and pace of global affliction caused by Coronavirus Disease-19 (COVID-19) is unprecedented in the recent past. From starting in a busy seafood market in the Chinese city of Wuhan, the virus has spread across the globe in less than a year, infecting over 76 million people and causing death of close to 1.7 million individuals worldwide. As no specific antiviral treatment is currently available, the major strategy in containing the pandemic is focused on early diagnosis and prompt isolation of the infected individuals. Several diagnostic modalities have emerged within a relatively short period, which can be broadly classified into molecular and immunological assays. While the former category is centered around real-time PCR, which is currently considered the gold standard of diagnosis, the latter aims to detect viral antigens or antibodies specific to the viral antigens and is yet to be recommended as a stand-alone diagnostic tool. This review aims to provide an update on the different diagnostic modalities that are currently being used in diagnostic laboratories across the world as well as the upcoming methods and challenges associated with each of them. In a rapidly evolving diagnostic landscape with several testing platforms going through various phases of development and/or regulatory clearance, it is prudent that the clinical community familiarizes itself with the nuances of different testing modalities currently being employed for this condition.

2018 ◽  
Vol 6 (1) ◽  
pp. 56-61
Author(s):  
Manisha Shrestha ◽  
Anand Kumar

Systemic inflammatory response syndrome (SIRS) is a frequent and serious problem faced by clinicians in day to day practice and is a major factor of intensive care morbidity and mortality. The American College of Chest Physicians and the American Society of Critical Care Medicine in 1991 published definitions and criteria for systemic inflammatory response syndrome.  Since then many researches have been undertaken  to better understand the pathophysiology of systemic inflammatory response syndrome and to determine the accuracy of its diagnostic criteria. The criteria set by the 1991 consensus  is still popularly  used  today. However,  with  the current  knowledge   on this matter many researchers have put forward the need of refinement in the criteria of systemic inflammatory response syndrome defined by 1991 consensus. This article aims to review  the epidemiology, etiology, pathophysiology, laboratory diagnosis,  treatment and the current views regarding SIRS.Journal of Universal College of Medical SciencesVol. 6, No. 1, 2018, Page: 56-61


1998 ◽  
Vol 40 (4) ◽  
pp. 215-218 ◽  
Author(s):  
Patrícia BRASIL ◽  
Daurita D. DE PAIVA ◽  
Dirce B. DE LIMA ◽  
Edson Jurado DA SILVA ◽  
José Mauro PERALTA ◽  
...  

Enterocytozoon bieneusi is the most prevalent microsporidian parasite that causes gastrointestinal infection in persons with AIDS. Microsporidia are increasingly recognized as important opportunistic pathogens all over the world but in Brazil only few cases have been reported due either to the non awareness of the clinical presentation of the disease or to difficulties in the laboratory diagnosis. We report a 3-year follow-up of a Brazilian HIV-positive patient in whom microsporidial spores were detected in stools and were identified as E. bieneusi using electron microscopy and PCR. The patient presented with chronic diarrhea, CD4 T-lymphocytes count below 100/mm3 and microsporidial spores were consistently detected in stools. Albendazole was given to the patient in several occasions with transient relief of the diarrhea, which reappeared as soon as the drug was discontinued. Nevertheless, a diarrhea-free period with weight gain up to 18 Kg occurred when a combination of nucleoside and protease inhibitors was initiated as part of the antiviral treatment.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3456 ◽  
Author(s):  
Lorenzo Pilla ◽  
Andrea Alberti ◽  
Pierluigi Di Mauro ◽  
Maria Gemelli ◽  
Viola Cogliati ◽  
...  

Advances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients’ overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale. The need for robust biomarkers to predict patients’ responsiveness to defined therapies and for their stratification is still unmet. Progress in immunological assays and genomic techniques as long as improvement in designing and performing studies monitoring the expression of these markers along with the evolution of the disease allowed to identify candidate biomarkers. However, none of them achieved a definitive role in predicting patients’ clinical outcomes. Along this line, the cross-talk of melanoma cells with tumor microenvironment plays an important role in the evolution of the disease and needs to be considered in light of the role of predictive biomarkers. The overview of the relationship between the molecular basis of melanoma and targeted therapies is provided in this review, highlighting the benefit for clinical responses and the limitations. Moreover, the role of different candidate biomarkers is described together with the technical approaches for their identification. The provided evidence shows that progress has been achieved in understanding the molecular basis of melanoma and in designing advanced therapeutic strategies. Nevertheless, the molecular determinants of melanoma and their role as biomarkers predicting patients’ responsiveness to therapies warrant further investigation with the vision of developing more effective precision medicine.


2020 ◽  
Vol 6 (4) ◽  
pp. 293 ◽  
Author(s):  
Breno Gonçalves Pinheiro ◽  
Rosane Christine Hahn ◽  
Zoilo Pires de Camargo ◽  
Anderson Messias Rodrigues

Paracoccidioidomycosis (PCM) is a mycotic disease caused by the Paracoccidioides species, a group of thermally dimorphic fungi that grow in mycelial form at 25 °C and as budding yeasts when cultured at 37 °C or when parasitizing the host tissues. PCM occurs in a large area of Latin America, and the most critical regions of endemicity are in Brazil, Colombia, and Venezuela. The clinical diagnosis of PCM needs to be confirmed through laboratory tests. Although classical laboratory techniques provide valuable information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratory practice. Recently, taxonomic changes driven by whole-genomic sequencing of Paracoccidioides have highlighted the need to recognize species boundaries, which could better ascertain Paracoccidioides taxonomy. In this scenario, classical laboratory techniques do not have significant discriminatory power over cryptic agents. On the other hand, several PCR-based methods can detect polymorphisms in Paracoccidioides DNA and thus support species identification. This review is focused on the recent achievements in molecular diagnostics of paracoccidioidomycosis, including the main advantages and pitfalls related to each technique. We discuss these breakthroughs in light of taxonomic changes in the Paracoccidioides genus.


2008 ◽  
Vol 11 (04) ◽  
pp. 778-791 ◽  
Author(s):  
Secaeddin Sahin ◽  
Ulker Kalfa ◽  
Demet Celebioglu

Summary The Bati Raman field is the largest oil field in Turkey and contains approximately 1.85 billion bbl of oil initially in place. The oil is heavy (12°API), with high viscosity and low solution-gas content. Primary recovery was less than 2% of oil originally in place (OOIP). Over the period of primary recovery (1961-86), the reservoir underwent extensive pressure depletion from 1,800 psig to as low as 400 psig in some regions, resulting in a production decline from 9,000 to 1,600 STB/D. In March 1986, a carbon-dioxide (CO2) -injection pilot in a 1,200-acre area containing 33 wells was initiated in the western portion of the field. The gas-injection was initially cyclic. In 1988, the gas injection scheme was converted to a CO2-flood process. Later, the process was extended to cover the whole field. A peak daily production rate of 13,000 STB/D was achieved, whereas rate would have been less than 1,600 STB/D without CO2 application. However, the field has undergone a progressive production decline since 1995to recent levels of approximately 5,500 STB/D. Polymer-gel treatments were carried out to increase the CO2 sweep efficiency. Multilateral- and horizontal-well technology also was applied on a pilot scale to reach the bypassed oil. A water-alternating-gas (WAG) application has been applied extensively in the western part of the field. Current production is 7,000 STB/D. This paper documents more than 25 years of experience of the Turkish Petroleum Corporation (TPAO) on the design and operation of this full-field immiscible CO2-injection project conducted in the Bati Raman oil field in Turkey. The objective is to update the current status report, update the reservoir/field problems that TPAO has encountered (unpredictable problems and results), and provide a critical evaluation of the success of the project. Introduction The Bati Raman field is the biggest oil accumulation in Turkey and is operated by TPAO. It contains very viscous and low-API-gravity oil in a very challenging geological environment. Because of the fact that the recovery factor by primary recovery was limited, several enhanced-oil-recovery (EOR) techniques had been proposed and tested at the pilot level in the 1970s and 1980s. On the basis of the success of the laboratory tests and the vast amount of CO2 available in a neighboring field, which is only 55 miles away from the Bati Raman field, huff ‘n’ puff injection was started in the early 1980s. Because of the early breakthrough of CO2 in offset wells in a short period of time, the project was converted to field-scale random-pattern continuous injection. During more than 20 years of injection, the recovery peaked at approximately 13,000 STB/D and began to decline, reaching today's value of approximately 7,000 STB/D. In the case of Bati Raman, in its mature, the injected agent is bypassing the remaining oil and production is curtailed by excessively high gas/oil ratios (GORs). The naturally fractured character of the reservoir rock has been a challenge for establishing successful 3D conformance from the beginning, and its impact is even more pronounced in the later stages of the process. Therefore, the field requires modifications in the reservoir-management scheme to improve the recovery factor and to improve productivity of the current wells.


2020 ◽  
Vol Volume 13 ◽  
pp. 2657-2665 ◽  
Author(s):  
Antonio Russo ◽  
Carmine Minichini ◽  
Mario Starace ◽  
Roberta Astorri ◽  
Federica Calò ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hong Zhao ◽  
Qi Wang ◽  
Changling Luo ◽  
Ligai Liu ◽  
Wen Xie

Liver-function decompensation or hepatocellular carcinoma (HCC) gradually appears after chronic hepatitis B progresses to cirrhosis. Effective antiviral treatment can significantly improve the long-term prognosis of decompensated patients, and some patients present recompensation of decompensated hepatitis B cirrhosis. At present, there are limited research data on the recompensation of decompensated hepatitis B cirrhosis. There is still controversy regarding the evaluation time, evaluation indicators, influencing factors, and long-term prognosis of recompensation.


Sign in / Sign up

Export Citation Format

Share Document