scholarly journals Improved Transglycosylation by a Xyloglucan-Active α-l-Fucosidase from Fusarium graminearum

2020 ◽  
Vol 6 (4) ◽  
pp. 295
Author(s):  
Birgitte Zeuner ◽  
Marlene Vuillemin ◽  
Jesper Holck ◽  
Jan Muschiol ◽  
Anne S. Meyer

Fusarium graminearum produces an α-l-fucosidase, FgFCO1, which so far appears to be the only known fungal GH29 α-l-fucosidase that catalyzes the release of fucose from fucosylated xyloglucan. In our quest to synthesize bioactive glycans by enzymatic catalysis, we observed that FgFCO1 is able to catalyze a transglycosylation reaction involving transfer of fucose from citrus peel xyloglucan to lactose to produce 2′-fucosyllactose, an important human milk oligosaccharide. In addition to achieving maximal yields, control of the regioselectivity is an important issue in exploiting such a transglycosylation ability successfully for glycan synthesis. In the present study, we aimed to improve the transglycosylation efficiency of FgFCO1 through protein engineering by transferring successful mutations from other GH29 α-l-fucosidases. We investigated several such mutation transfers by structural alignment, and report that transfer of the mutation F34I from BiAfcB originating from Bifidobacterium longum subsp. infantis to Y32I in FgFCO1 and mutation of D286, near the catalytic acid/base residue in FgFCO1, especially a D286M mutation, have a positive effect on FgFCO1 transfucosylation regioselectivity. We also found that enzymatic depolymerization of the xyloglucan substrate increases substrate accessibility and in turn transglycosylation (i.e., transfucosylation) efficiency. The data include analysis of the active site amino acids and the active site topology of FgFCO1 and show that transfer of point mutations across GH29 subfamilies is a rational strategy for targeted protein engineering of a xyloglucan-active fungal α-l-fucosidase.

2011 ◽  
Vol 391-392 ◽  
pp. 1319-1323
Author(s):  
Cui Zheng ◽  
Lin Li ◽  
Hao Pang ◽  
Zhao Mei Wang ◽  
Na Li

It still remains challenging for effective hydrolysis of chitosan into chitosan oligomers. In this work, a pretreatment was conducted on chitosan by an ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), aiming at improving enzymatic depolymerization of chitosan. X-ray diffraction analysis indicated that the inter- and intra-molecular hydrogen bonds within chitosan molecules were broken by [C4mim]Cl and the crystalline was destroyed. The oligo-chitosan hydrolyzed from IL-pretreated chitosan, coded as COS-IL, showed a DP of 3~5, in contrast to DP 5~8 with oligo-chitosan obtained from untreated chitosan(coded as COS-UN). COS-IL was more effective than COS-UN in inhibiting intestinal spoilage bacterials growth and it has positive effect on the growth of intestinal probiotic bacterials.


1992 ◽  
Vol 12 (9) ◽  
pp. 3757-3765
Author(s):  
J W Chen ◽  
B R Evans ◽  
S H Yang ◽  
H Araki ◽  
Y Oshima ◽  
...  

The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.


2001 ◽  
Vol 276 (15) ◽  
pp. 11698-11704 ◽  
Author(s):  
Pär L. Pettersson ◽  
Bengt Mannervik

Human glutathione transferase (GST) A1-1 efficiently catalyzes the isomerization of Δ5-androstene-3,17-dione (AD) into Δ4-androstene-3,17-dione. High activity requires glutathione, but enzymatic catalysis occurs also in the absence of this cofactor. Glutathione alone shows a limited catalytic effect.S-Alkylglutathione derivatives do not promote the reaction, and the pH dependence of the isomerization indicates that the glutathione thiolate serves as a base in the catalytic mechanism. Mutation of the active-site Tyr9into Phe significantly decreases the steady-state kinetic parameters, alters their pH dependence, and increases the pKavalue of the enzyme-bound glutathione thiol. Thus, Tyr9promotes the reaction via its phenolic hydroxyl group in protonated form. GST A2-2 has a catalytic efficiency with AD 100-fold lower than the homologous GST A1-1. Another Alpha class enzyme, GST A4-4, is 1000-fold less active than GST A1-1. The Y9F mutant of GST A1-1 is more efficient than GST A2-2 and GST A4-4, both having a glutathione cofactor and an active-site Tyr9residue. The active sites of GST A2-2 and GST A1-1 differ by only four amino acid residues, suggesting that proper orientation of AD in relation to the thiolate of glutathione is crucial for high catalytic efficiency in the isomerization reaction. The GST A1-1-catalyzed steroid isomerization provides a complement to the previously described isomerase activity of 3β-hydroxysteroid dehydrogenase.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3220-3220
Author(s):  
Sara Redaelli ◽  
Rocco Piazza ◽  
Roberta Rostagno ◽  
Marianna Sassone ◽  
Vera Magistroni ◽  
...  

Abstract The treatment of Chronic Myeloid Leukemia (CML) has been radically modified by the discovery of imatinib (IM), a selective inhibitor of the fusion protein Bcr-Abl, the cause of the disease. A variable portion of CML patients experience resistance to IM therapy. Resistance can arise from different mechanisms but in the vast majority of cases is due to point mutations into the protein sequence that alter directly or indirectly the drug-protein binding. Mutation sites can be schematically clustered in four region: the P loop, the IM binding site, the catalytic domain and the activation loop (A loop). At present more than 70 mutations conferring different levels of resistance have been found in CML patients. Recently, several new inhibitors have been developed in order to obtain an increased potency and a broad range of activity against IM resistant mutants. Nilotinib (NIL) is an IM derivative about 30-fold more potent than IM. Dasatinib (DAS) is a dual-specific Src/Abl inhibitor, structurally unrelated to IM and characterized by an activity 100 to 300-fold higher than IM. Bosutinib (BOS) is a dual Src/Abl inhibitor that shows an activity 10 to 30-fold higher than IM. It is known that resistance to second generation TKIs can also arise and the analysis of mutation profiles reveals substantial differences among different TKIs. Presently the choice of a TKI to treat a patient resistant to IM is mostly based on an empirical basis, e.g. the fact that a certain patient has not been previously exposed to that particular TKI. The possibility to directly compare the different activities of TKIs against a given mutation is of remarkable importance in clinical practice. Such a tool could be used similarly to an antibiogram for bacterial diseases, guiding the choice of the most appropriate inhibitor for each patient. In our study, we investigated the activity of BOS, DAS, IM and NIL against a panel of 18 mutated forms of BCR/ABL chosen to cover the most common mutations found in patients. Stable Ba/F3 transfectant cell lines were generated and the TKIs antiproliferative activity was determined by tritiated thymidine incorporation assay. The relative IC50 increase over wild type BCR/ABL (Relative Resistance RR) was calculated. We classified the RR values in three categories: sensitive (RR≤2), resistant (between 2.01 and 10) or highly resistant (>10) as presented in the table. IC50-fold increase (WT=1) Imatinib Bosutinib Dasatinib Nilotinib Parental 10.78 38.31 >50 38.45 WT 1 1 1 1 P-LOOP L248V 3.54 2.97 5.11 2.80 G250E 6.86 4.31 4.45 4.56 Q252H 1.39 0.81 3.05 2.64 Y253F 3.58 0.96 1.58 3.23 E255K 6.02 9.47 5.61 6.69 E255V 16.99 5.53 3.44 10.31 D276G 2.18 0.60 1.44 2.00 C-Helix E279K 3.55 0.95 1.64 2.05 V299L 1.54 26.10 8.65 1.34 Active site T3151 17.50 45.42 75.03 39.41 F317L 2.60 2.42 4.46 2.22 SH2-contact M351T 1.76 0.70 0.88 0.44 Active site F359V 2.86 0.93 1.49 5.16 A-LOOP L384M 1.28 0.47 2.21 2.33 H396P 2.43 0.43 1.07 2.41 H396R 3.91 0.81 1.63 3.10 G398R 0.35 1.16 0.69 0.49 C terminal lobe F486S 8.10 2.31 3.04 1.85 Sensitive ≤2 Resistant 2.01–10 Highly resistant >10 (Updated table available online at http://www.dimep.medicina.unimib.it/en/staff_174.php?docente_id=32) Our study points out at the differences in the activity spectrum of the 4 TKIs against the 18 Bcr/Abl mutations considered. The activity pattern presented in this work will help to reach a rational and tailored therapy offering to physicians a tool to use the new TKIs in the most efficient way for their patients.


2021 ◽  
Author(s):  
Yanxiang Zhao ◽  
Mengyu Chi ◽  
Huilin Sun ◽  
Hengwei Qian ◽  
Jun Yang ◽  
...  

Fusarium graminearum is one of the most important causal agent of Fusarium Head Blight disease and now were controlled mainly by chemicals such as DMI fungicides. FgCYP51B is one of the DMI targets in F. graminearum and Tyrosine123 is an important amino acid in Fusarium graminearum CYP51B, located in one of the predicted substrate binding pockets based on the binding mode between demethylation inhibitors (DMIs) and CYP51B. Previous study suggests that resistance to DMI fungicides is primarily attributed to point mutations in the CYP51 gene and that the Y123H mutation in F. verticillioides CYP51 confers prochloraz resistance in the laboratory. To investigate the function of FgCYP51B Y123 residue in the growth and development, pathogenicity, and DMI-resistance, the FgCYP51B Y123H mutant was generated and analyzed. Results revealed that Y123H mutation led to reduced conidial sporulation and affected ascospore development and moreover, the mutation conferred reduced sensitivity to prochloraz. The qPCR and molecular docking were performed to investigate the resistance mechanism. Results indicated that Y123H mutation changed the target gene expression and decreased the binding affinity of FgCYP51 to prochloraz. These results will attract more attention to the potential DMI-resistant mutation of F. graminearum and further deepen our understanding of the DMI resistance mechanism.


Author(s):  
Mirja Krause ◽  
Tiila-Riikka Kiema ◽  
Peter Neubauer ◽  
Rik K. Wierenga

The crystal structures are described of two variants of A-TIM: Ma18 (2.7 Å resolution) and Ma21 (1.55 Å resolution). A-TIM is a monomeric loop-deletion variant of triosephosphate isomerase (TIM) which has lost the TIM catalytic properties. Ma18 and Ma21 were identified after extensive directed-evolution selection experiments using anEscherichia coliL-arabinose isomerase knockout strain expressing a randomly mutated A-TIM gene. These variants facilitate better growth of theEscherichia coliselection strain in medium supplemented with 40 mML-arabinose. Ma18 and Ma21 differ from A-TIM by four and one point mutations, respectively. Ma18 and Ma21 are more stable proteins than A-TIM, as judged from CD melting experiments. Like A-TIM, both proteins are monomeric in solution. In the Ma18 crystal structure loop 6 is open and in the Ma21 crystal structure loop 6 is closed, being stabilized by a bound glycolate molecule. The crystal structures show only small differences in the active site compared with A-TIM. In the case of Ma21 it is observed that the point mutation (Q65L) contributes to small structural rearrangements near Asn11 of loop 1, which correlate with different ligand-binding properties such as a loss of citrate binding in the active site. The Ma21 structure also shows that its Leu65 side chain is involved in van der Waals interactions with neighbouring hydrophobic side-chain moieties, correlating with its increased stability. The experimental data suggest that the increased stability and solubility properties of Ma21 and Ma18 compared with A-TIM cause better growth of the selection strain when coexpressing Ma21 and Ma18 instead of A-TIM.


1996 ◽  
Vol 7 (7) ◽  
pp. 1123-1136 ◽  
Author(s):  
K M Ruppel ◽  
J A Spudich

We used random mutagenesis to create 21 point mutations in a highly conserved region of the motor domain of Dictyostelium myosin and classified them into three distinct groups based on the ability to complement myosin null cell phenotypes: wild type, intermediate, and null. Biochemical analysis of the mutated myosins also revealed three classes of mutants that correlated well with the phenotypic classification. The mutated myosins that were not fully functional showed defects ranging from ATP nonhydrolyzers to myosins whose enzymatic and mechanical properties are uncoupled. Placement of the mutations onto the three-dimensional structure of myosin showed that the mutated region lay along the cleft that separates the active site from the actin-binding domain and that has been shown to move in response to changes at the active site. These results demonstrate that this region of myosin plays a key role in transduction of chemical energy to mechanical displacement.


2015 ◽  
Vol 60 (2) ◽  
pp. 990-1002 ◽  
Author(s):  
Susann Skagseth ◽  
Trine Josefine Carlsen ◽  
Gro Elin Kjæreng Bjerga ◽  
James Spencer ◽  
Ørjan Samuelsen ◽  
...  

ABSTRACTMetallo-β-lactamases (MBLs) hydrolyze virtually all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems. The worldwide emergence of antibiotic-resistant bacteria harboring MBLs poses an increasing clinical threat. The MBL German imipenemase-1 (GIM-1) possesses an active site that is narrower and more hydrophobic than the active sites of other MBLs. The GIM-1 active-site groove is shaped by the presence of the aromatic side chains of tryptophan at residue 228 and tyrosine at residue 233, positions where other MBLs harbor hydrophilic residues. To investigate the importance of these two residues, eight site-directed mutants of GIM-1, W228R/A/Y/S and Y233N/A/I/S, were generated and characterized using enzyme kinetics, thermostability assays, and determination of the MICs of representative β-lactams. The structures of selected mutants were obtained by X-ray crystallography, and their interactions with β-lactam substrates were modeledin silico. Steady-state kinetics revealed that both positions are important to GIM-1 activity but that the effects of individual mutations vary depending on the β-lactam substrate. Activity against type 1 substrates bearing electron-donating C-3/C-4 substituents (cefoxitin, meropenem) could be enhanced by mutations at position 228, whereas hydrolysis of type 2 substrates (benzylpenicillin, ampicillin, ceftazidime, imipenem) with methyl or positively charged substituents was favored by mutations at position 233. The crystal structures showed that mutations at position 228 or the Y233A variant alters the conformation of GIM-1 loop L1 rather than that of loop L3, on which the mutations are located. Taken together, these data show that point mutations at both positions 228 and 233 can influence the catalytic properties and the structure of GIM-1.


Sign in / Sign up

Export Citation Format

Share Document