scholarly journals ITS2 Sequencing and Targeted Meta-Proteomics of Infant Gut Mycobiome Reveal the Functional Role of Rhodotorula sp. during Atopic Dermatitis Manifestation

2021 ◽  
Vol 7 (9) ◽  
pp. 748
Author(s):  
Kevin Mok ◽  
Narissara Suratanon ◽  
Sittiruk Roytrakul ◽  
Sawanya Charoenlappanit ◽  
Preecha Patumcharoenpol ◽  
...  

Association between the gut mycobiome and atopic dermatitis was investigated in 9–12-month-old infants using metagenomics. Two groups of atopic dermatitis infants were classified according to their symptom development as outgrown (recovered) and persisted (still undergoing). The evenness and diversity of the mycobiome in the persisted group were higher than in the healthy and outgrown groups. Dysbiosis of the microbiome in the persisted group was observed by a reduction in the Ascomycota/Basidiomycota ratio. Five fungi were selected as markers from each sample group. In the persisted group, Rhodotorula sp. abundance increased significantly, while Wickerhamomyces sp. and Kodamaea sp. abundance increased in the healthy group, and Acremonium sp. and Rhizopus sp. abundance increased considerably in the outgrown group. Metaproteomic analysis revealed that the persisted group had a high abundance of fungal proteins, particularly those from Rhodotorula sp. Unique proteins such as RAN-binding protein 1 and glycerol kinase from Rhodotorula sp. were hypothesized to be related to atopic dermatitis manifestation in infants.

1995 ◽  
Vol 128 (3) ◽  
pp. 341-354 ◽  
Author(s):  
M Raichman ◽  
M C Panzeri ◽  
E Clementi ◽  
P Papazafiri ◽  
M Eckley ◽  
...  

Calsequestrin (CSQ) is the low affinity, high capacity Ca(2+)-binding protein concentrated within specialized areas of the muscle fiber sarcoplasmic reticulum (a part of the ER) where it is believed to buffer large amounts of Ca2+. Upon activation of intracellular channels this Ca2+ pool is released, giving rise to the [Ca2+]i increases that sustain contraction. In order to investigate the ER retention and the functional role of the protein, L6 rat myoblasts were infected with a viral vector with or without the cDNA of chicken CSQ, and stable clones were investigated before and after differentiation to myotubes. In the undifferentiated L6 cells, expression of considerable amounts of heterologous CSQ occurred with no major changes of other ER components. Ca2+ release from the ER, induced by the peptide hormone vasopressin, remained however unchanged, and the same occurred when other treatments were given in sequence to deplete the ER and other intracellular stores: with the Ca2+ pump blocker, thapsigargin; and with the Ca2+ ionophore, ionomycin, followed by the Na+/H+ ionophore, monensin. The lack of effect of CSQ expression on the vasopressin-induced [Ca2+]i responses was explained by immunocytochemistry showing the heterologous protein to be localized not in the ER but in large vacuoles of acidic content, positive also for the lysosomal enzyme, cathepsin D, corresponding to a lysosomal subpopulation. After differentiation, all L6 cells expressed small amounts of homologous CSQ. In the infected cells the heterologous protein progressively decreased, yet the [Ca2+]i responses to vasopressin were now larger with respect to both control and undifferentiated cells. This change correlated with the drop of the vacuoles and with the accumulation of CSQ within the ER lumen, where a clustered distribution was observed as recently shown in developing muscle fibers. These results provide direct evidence for the contribution of CSQ, when appropriately retained, to the Ca2+ capacity of the rapidly exchanging, ER-located Ca2+ stores; and for the existence of specific mechanism(s) (that in L6 cells develop in the course of differentiation) for the ER retention of the protein. In the growing L6 myoblasts the Ca(2+)-binding protein appears in contrast to travel along the exocytic pathway, down to post-Golgi, lysosome-related vacuoles which, based on the lack of [Ca2+]i response to ionomycin-monensin, appear to be incompetent for Ca2+ accumulation.


2015 ◽  
Vol 42 (8) ◽  
pp. 1167-1174 ◽  
Author(s):  
Guohong Wang ◽  
Dan Li ◽  
Xiayin Ma ◽  
Haoran An ◽  
Zhengyuan Zhai ◽  
...  

2004 ◽  
Vol 165 (5) ◽  
pp. 723-734 ◽  
Author(s):  
Justin P. Annes ◽  
Yan Chen ◽  
John S. Munger ◽  
Daniel B. Rifkin

Transforming growth factor-βs (TGF-β) are secreted as inactive complexes containing the TGF-β, the TGF-β propeptide, also called the latency-associated protein (LAP), and the latent TGF-β binding protein (LTBP). Extracellular activation of this complex is a critical but incompletely understood step in TGF-β regulation. We have investigated the role of LTBP in modulating TGF-β generation by the integrin αVβ6. We show that even though αvβ6 recognizes an RGD on LAP, LTBP-1 is required for αVβ6-mediated latent TGF-β activation. The domains of LTBP-1 necessary for activation include the TGF-β propeptide-binding domain and a basic amino acid sequence (hinge domain) with ECM targeting properties. Our results demonstrate an LTBP-1 isoform-specific function in αVβ6-mediated latent TGF-β activation; LTBP-3 is unable to substitute for LTBP-1 in this assay. The results reveal a functional role for LTBP-1 in latent TGF-β activation and suggest that activation of specific latent complexes is regulated by distinct mechanisms that may be determined by the LTBP isoform and its potential interaction with the matrix.


1998 ◽  
Vol 18 (12) ◽  
pp. 7383-7396 ◽  
Author(s):  
David A. Mangus ◽  
Nadia Amrani ◽  
Allan Jacobson

ABSTRACT The poly(A) tail of an mRNA is believed to influence the initiation of translation, and the rate at which the poly(A) tail is removed is thought to determine how fast an mRNA is degraded. One key factor associated with this 3′-end structure is the poly(A)-binding protein (Pab1p) encoded by the PAB1 gene inSaccharomyces cerevisiae. In an effort to learn more about the functional role of this protein, we used a two-hybrid screen to determine the factor(s) with which it interacts. We identified five genes encoding factors that specifically interact with the carboxy terminus of Pab1p. Of a total of 44 specific clones identified,PBP1 (for Pab1p-binding protein) was isolated 38 times. Of the putative interacting genes examined, PBP1 promoted the highest level of resistance to 3-aminotriazole (>100 mM) in constructs in which HIS3 was used as a reporter. We determined that a fraction of Pbp1p cosediments with polysomes in sucrose gradients and that its distribution is very similar to that of Pab1p. Disruption ofPBP1 showed that it is not essential for viability but can suppress the lethality associated with a PAB1 deletion. The suppression of pab1Δ by pbp1Δ appears to be different from that mediated by other pab1 suppressors, since disruption of PBP1 does not alter translation rates, affect accumulation of ribosomal subunits, change mRNA poly(A) tail lengths, or result in a defect in mRNA decay. Rather, Pbp1p appears to function in the nucleus to promote proper polyadenylation. In the absence of Pbp1p, 3′ termini of pre-mRNAs are properly cleaved but lack full-length poly(A) tails. These effects suggest that Pbp1p may act to repress the ability of Pab1p to negatively regulate polyadenylation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 215-215
Author(s):  
Marije Bartels ◽  
Cornelieke EG Pals ◽  
Jorg van Loosdregt ◽  
Steven J. Ackerman ◽  
Marc Bierings ◽  
...  

Abstract Abstract 215 Dysregulation of myeloid differentiation can result in the development of a variety of pathological conditions ranging from bone marrow failure to myelodysplastic syndromes and leukemia. Neutrophil development is tightly regulated by key transcription factors including CCAAT enhancer-binding protein-alpha (C/EBPα) and CCAAT enhancer-binding protein-epsilon (C/EBPε). In recent years it has become clear that the expression and function of such proteins is regulated by post-translational modifications. Here, we have investigated the regulation and functional role of C/EBPε acetylation. Our results demonstrate that C/EBPε is indeed acetylated and that this can be increased by the lysine acetyltransferases (KAT) TIP60 and p300, as well as the sirtuin 1(SIRT1) inhibitor nicotinamide (NAM). In agreement with this, acetylation was decreased upon co-transfection of SIRT1. Despite normal expression levels and the capacity to form homo- and heterodimers, the C/EBPε-lysine dead mutant (C/EBPε K15xR) was transcriptionally inactive in luciferase reporter assays, suggesting that acetylation of C/EBPε is functionally important. Moreover, co-transfection of SIRT1 inhibited C/EBPε transcriptional activation. In order to investigate the functional relevance of acetylaton of C/EBPε, we retrovirally transduced CD34+ hematopoietic progenitors with C/EBPε or C/EBPε K15xR and differentiated sorted progenitors towards mature neutrophils. We observed a significant decrease in the percentage of mature neutrophils after transduction with C/EBPε K15xR compared to C/EBPε or control cells. Cytospin analysis demonstrated an immature phenotype of the C/EBPε K15xR-transduced cells, suggesting a differentiation block at the promyelocytic stage. In order to determine the functionally important acetylated lysine residues, we performed mass spectometry and identified four C/EBPε acetylation sites including two sites in the repression domain and one site in the basic region, which includes the DNA-binding domain. To investigate the functional role of acetylation of these lysine residues, we designed specific C/EBPε lysine mutants. Utilizing the previously described ectopic expression system, we observed reduced levels of total C/EBPε acetylation upon transfection of two specific lysine mutants (K121R and K198R). Acetylation of these specific residues was confirmed by performing add-back experiments in the C/EBPε K15xR background. Furthermore, upon transfection of C/EBPε K121R and C/EBPε K198R in a luciferase reporter assay, we observed reduced transcriptional activation by C/EBPε, suggesting that acetylation of lysine 121 and lysine 198 is important for C/EBPε function. Currently we are investigating the functional role of acetylation of these specific lysine residues during neutrophil differentiation. There is increasing knowledge concerning the role of epigenetic modifications in the development of myeloid malignancies. However, the specific role of acetylation of non-histone proteins, including key-transcription factors involved in myelopoiesis, remains largely unknown. We demonstrate, for the first time, the functional importance of C/EBPε acetylation during neutrophil differentiation. Together our data provide new insights in the regulation of both normal and aberrant myeloid differentiation. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Emily Capone ◽  
Stefano Iacobelli ◽  
Gianluca Sala

AbstractThe lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a secreted, hyperglycosylated protein expressed by the majority of human cells. It was first identified as cancer and metastasis associated protein, while its role in innate immune response upon viral infection remains still to be clarified. Since its discovery dated in early 90 s, a large body of literature has been accumulating highlighting both a prognostic and functional role for LGALS3BP in cancer. Moreover, data from our group and other have strongly suggested that this protein is enriched in cancer-associated extracellular vesicles and may be considered a promising candidate for a targeted therapy in LGALS3BP positive cancers. Here, we extensively reviewed the literature relative to LGALS3BP role in cancer and its potential value as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document